Tech Newsletter

Golden Bits® Software, Inc.

USB Device Driver for Windows

The details about Windows USB device drivers

Inthisissue:

* USB Device Driver
Published in the April

issue of Dr. Dobbs
Magazine
* .NET Top 5

(Both with sample code)

This article is featured in the April issue
of Dr. Dobbs Magazine. To view online
go to: www.ddj.com/articles/2004/0404/

Introduction

USB devices have become very popular. Products
that use USB such as MP3 players, digital cameras,
and removal flash storage
are now commonplace.

Golden Bits(R) isasoftware engineering
firm providing consulting servicesina
widerange of diversetechnologies:

e Windows, Linux

* DeviceDrivers, Embedded Systems
e Database, TCP/IP, GUIs

See page 12 for past projects
www.gol denbits.com.

Your next PC will probably
use USB to connect your
keyboard and mouse. What
has made USB so popular
isits low cost, flexibility,
and especiadly itseaseof use
—youjust plug your device
into your PC.

Technologies

® Fibre channel
® Device drivers
® COM/DCOM

® Database, SQL
® C/C++

® SCsSi

® GUIS/MFC/.NET

Gopyri ght (c) 2002- 2004
@l denBts Sftware, Inc.

Golden Bits Software, Inc.
3525 Del Mar Heights Rd, Suite 158
San Diego, CA 92130

858.259.3870 phone

858.259.7655 fax

This article discusses the details of writing an USB
devicedriver for Windows. A working sampledriver
is can be downloaded from www.goldenbits.com/
news etter/issue2/ushsampl e.zip.

USB Technology

Beforewediveintothedriver itself, itisvery helpful
to understand some of the basics of USB technol-
ogy. USB is a seria bus (there are only 4 signals)
organized in ahierarchal manner —abasic tree struc-
ture. The tree can be extended by the addition of
hubs, and each hub can support additional devices.
USB can support up to 127 devices, but in practice
themost I’ ve ever seenisfour devices. At thetop of
the treeistheroot hub and host controller that con-
trols all of the device configuration and traffic on
the bus. Figure 1 shows the USB topology.

continued on page 2

NET Top 5

Top 5 Features and Functions You'll Need

Download sample code from www.gol denbits.com/
newsl etter/issue2/nettop5.zip

Whenever you look at any new technology, you
instinctively look for specific features and
functionality that you know you need to develop
your application, embedded system, or network
utility. These are features and functionsthat you've
relied on inthe past and can’t do without. You start
asking yourself questions like: “I did a thread pool
in C using the WIN32 API for aone of our modules.
How isthisdonein .NET?" Or “If | haveto port our
monster applicationto .NET, how will | manage 100

socket connections?’. This article discusses what |
call .NET Top 5 Features and Functions.

Depending on what you're developing, there are
common featuresthat must provide certain function-
ality that you can rely on to enable you to develop a
solid software system. These features and associated
functionality may be supplied by the operating
system, runtime environment, or some external
module. What are the top 5 features? 1) Threading,
2) locking, 3) memory management, 4) file
manipulation, and 5) network communications. What
do | mean by functionality? For example: alocking
primitive will in fact enforce only a single access
(serialized accessif you will) to acritical section of
code or data structure, or that a thread can have

continued on page 8

Vqume 1 Issue 2

http://www.goldenbits.com/newsletter/issue2/usbsample.zip
http://www.goldenbits.com/newsletter/issue2/usbsample.zip
http://www.goldenbits.com/
http://www.goldenbits.com/newsletter/issue2/nettop5.zip
http://www.goldenbits.com/newsletter/issue2/nettop5.zip

Page 2 Tech Newsletter

USB (continued)

configuration, interface, and endpoint descriptors.

The device descriptor contains the vendor and product IDs,
which is how the Windows PNP manager knows which USB
driver to load. The configuration, interface, and endpoint
descriptors describe how your device wishes to be connected
to the bus itself. The actual connections are called endpoints
Keyboard Mouse and represent a unidirectional destination or source of data
Device Device between the device and the host. To send and receive data,
you will need two endpoints, one output to the device, and one
input from the device. These descriptors are amost always
predefined in the device'sfirmware (EEPROM or other). How
your driver uses these descriptors is examined later in this

article.

CD Burner

Data and control messages are transferred in one or more
individual transactions. Transactionsthemselves are contained
within aframe (low speed) or micro frame (high speed), aframe
Figure 1 can contain multiple transactions. If the amount of data will
not fit into one transaction, then it is broken up into multiple
transactions over several frames. The frames are either 1
millisecond (low speed bus) or 125 microseconds (high speed
bus) in duration. The host controller schedules all of the
transactions and frames. One simple way to think about this
process is each frame is a train with a fixed number of cargo

Speakers Video

USB isapolled bus, which meansthe controller constantly pollsall of
the devices to see if the device has any data to transfer to the host
andto alsotoinitiateatransfer to the device. Thispolling enablesthe) o
root hub/controller to control the bandwidth of the bus, whichis > where each car contal qsatransactlon, the host cont_ro!ler
important when performing isochronous transfers. During an initial s.chedul esthesetra ”S_a”q fillsthe carg as necessary. Thisisa
setup phase, each device on the busisassigned an addressby theroot ~ Silly example, but | think it gets the point across.

hub when it connects. During this phase the device reports its con-

figuration using aset of data structures called descriptors: the device, continued on page 3

Bulk Lots of data, no loss of data, error correction. Used for disks,
printer, scanners.

Lossy, guaranteed delivery rate, Nno error correction, can reserve

Isochronous bandwidth. Used for audio, video.
Interrupt Asynchronous data to host, guaranteed polling rate, error
P correction. Usually for input device.s
Control Configuration, setup messages, relatively small data sizes, error

correction. Used for setup and configuration.

Table 1

Tech Newsletter published by Golden Bits Software, Inc. Copyright (c) 2002-4. All rights reserved.

Disclaimer: All material ispresented "as is" without warranty of any kind, either expressed or implied, including,
without limitation, theimplied warranties of merchantability or fitnessfor aparticular purpose. Golden Bitsshall not be
liablefor any damageswhatsoever related to the use of any information presented in these materials. The sample code
provided isjust that, ssmplesand isnot intended for any commercial use. Theinformation presented isasaccurate as
possible, however mistakes can and do happen. Pleaseinform Golden Bitsby email with any errors. Golden Bits shall
not be responsible for any damages owing to editorial errors.

Tech Newsletter

USB (continued)

USB definesfour types of transfers: bulk, isochronous, interrupt, and
control. These transfer types provides the designer of a USB device
anice selection of options, meaning depending on the type of device,
you can select the appropriate transfer type. For example, a USB

keyboard does not need the bandwidth of a bulk transfer.

Each type of transfer and its characteristics are summarized in
Table 1. The use of descriptors, support of different transfer types,
and configurable nature make USB very flexible; you can connect
almost any conceivable device. Since the USB businterfaceis very
flexibleand can support awide range of devices, you can think of it as
the SwissArmy knife of sorts. So, there’syour extremely quick tour
of USB. The key itemsthat relate directly to devicedriversare:

= Endpoints are unidirectional. Therefore, you can’t send data on
an inbound pipe.

= Endpoints are mapped to pipe handles. The pipe handle is what
you use to transmit and receive data.

» Transfer Types affect how much data you can send and if you
can lose data.

n Descriptors, interfaces, and endpoints.

Client driver
(this what you write)

- —

USB Hub driver
usbhub.sys

——

Client driver
single interface

USB Hub driver
usbhub.sys

Page 3

The current USB specification isversion 2.0 and can be
found at: www.usb.org.

USB Implementation on Windows

Microsoft providesafull stack of driversfor USB bus support;
you just have to write a driver for your own USB device.
Microsoft also provides a set of class drivers for audio,
network, storage, printer, and HID (Human Input Device —
fancy name for amouse or keyboard). Support for these types
of USB devicesenablesyour deviceto easily fit into aspecific
device class. For example, if you have a USB disk drive, the
fact the drive is located on a USB bus in transparent to the
system. The M S supplied usbstor.sys handles all of the details
of presenting thedisk driver tothe SCSI Port driver. Depending
on thetype of device, you may not haveto even writeadriver
for your USB device, as is the case for audio devices (your
USB device hasto be compliant with USB Audio spec 1.0).

The USB driver stacks (i.e., driver layers) are different for
Windows 2000 and XP/2003. The two main differences
between the driver stacks are: 1) Windows X P/2003 supports
high speed (USB 2.0 spec) devicesand 2) includesanew generic

continued on page 4

Client driver
Interface 2

Client driver
Interface 1

Generic Parent driver
usbccgp.sys

The generic handles usb devices with
multiple interfaces. The device will be
treated as a composite device and each
interface will be refered to as a function.
The generic parent driver will create a PDO
for each interface

Host controller driver
ushd.sys

uchd.sys oropenhci.sys

Host controller driver
usbport.sys

usbuhic.sys, usbohic.sys,
usbehic.sys

Usbd.sys is a port driver
that will load uchd.sys or
openchi.sys mini port
drivers.

Windows 2000 USB Driver Stack

Usbport.sys is a port driver that will
load usbubhic.sys, usbohic.sys,
usbehic.sys (for high speed
devices)
mini port drivers.

Windows XP/2003 USB Driver Stack

Figure 2 - USB Driver Stacks

Page 4
USB (continued)

parent driver (usbcegp.sys) to support devicesthat expose multiple
interfaces. The new generic parent driver solves the problem of
managing separate function drivers for composite USB devices.
For example, if you designed anew digital camerathat could both
take pictures and capture real time, you may want a separate driver
for each function: onedriver to download picturesand another driver
to display real time video on the screen. Figure 2 shows the USB
driver stack for Windows 2000 and Windows X P/2003.

Your USB deviceisidentified by aunique vendor and product ID
which are managed by the USB-Implementers Forum, Inc. Thecost
of avendor 1D is$1,500 - $2,500 depending if you become amember
of the USB-IF organi zation (see www.usb.org/devel opers/vendor).
In addition to getting avendor I D, you will probably want your device
to becertified by USB-IF and passWindowsWHQL testing.

Thevendor ID stringisidentical to how PCI devicesareidentified,
the format of the USB vendor id string is: USB/
VID_XXXX&PID ZZZZ,where XXXX andZZZZ arethevendor
and product IDs. This information is sent to the host system, as
part of the device descriptor, during the device setup phase. The
Windows OS searches the list of installed drivers looking for a
matching vendor and product ID - your driver’s install .INF file

should contain these numbers.

Logical view of descriptors

— Device Desc

— Config Desc

Tech Newsletter

Descriptors Everywhere

One of the most confusing aspects of writing a USB driver is
understanding all of the descriptors (device, configuration,
interface, and endpoint), what they are used for, and how your
driver managesthem. The DDK documentation isabit confusing.
After reading the documentation four times, | still had the uneasy
feeling | didn’t understand exactly how these descriptors are
used. Hopefully, | can do abetter job than the DDK —so hereit
goes.

A descriptor is nothing more that a data structure. It's not a
handle or some other unique object. When the designers of the
USB standard tired to figure out aflexible and extensible way of
configuring a USB device, they defined a set of data structures
(the descriptors) that a USB device would present to describe
itself and its capabilities. A USB device has one device descriptor
that describes the device as a whole. This descriptor contains
the vendor and product ID and the number of configurations.
Each configuration is described by a configuration descriptor.
The USB standard allows for multiple configurations, but in
practice only oneis used (the Microsoft USB classdriversonly
support the first configuration). Each configuration contains a
set of interface descriptors where each interface defines a set of
endpoints. It isthese endpointsthat your driver will communicate

with. Your driver codewill ultimately use a pipe handleto send/
continued on page 5

In memory layout of descriptors

—————) struct USB_DEVICE_DESCRIPTOR

r Interface 0 Desc

struct USB_CONFIGURATION_DESCRIPTOR

> struct USB_INTERFACE_DESCRIPTOR

> struct USB_ENDPOINT_DESCRIPTOR

[Endpoint 0

Endpoint 1 —

|

..... n number
of endpoints

If your device has
multiple interfaces

F Interface 1 Desc

> struct USB_ENDPOINT_DESCRIPTOR

The USB structures are
defined in USB100.h

Figure 3

Tech Newsletter

USB (continued)

receive datawith aUSB device, the pipe handle actually representsan
endpoint.

When your driver getsthe USB device configuration, these descriptors
are returned to your driver (through a call to the Microsoft USB bus
driver) inachunk of memory containing acontinuouslist of descriptors.
Here is one of the confusing parts of the DDK documentation: the
DDK describes how to get this descriptor list but doesn’t do a good
job in explaining exactly what you' ve got. Figur e 3 showswhat you
have. The important piece in all of thisis the interface and endpoint
descriptors. These are the descriptors that define how your driver

talksto the USB device.

Interfaces and Endpoints

— Configuration

Interface 1

f\ Endpoints
@
L
L
@

Interface 2

Figure 4

A USB device defines one or more interfaces where each interface
describes one or more endpoints. What does this mean? Essentially,
an interface is a logical grouping of endpoints. You should group
similar endpointsinto the sameinterface. |nthe accompanying sample
driver, the encryption and decryption functions are contained in
separate interfaces. As another example, you could design a USB
device to perform encryption/decryption and compression/
decompression where the en(de)cryption and (de) compression are
contained in separate interfaces. Figure 4 illustrates how interface
and endpointsarelogically organized.

Page 5

An endpoint isasource or destination of datathat your driver
will read from or writeto. Endpointsareunidirectional, havea
unique address, and have a transfer type (bulk, isochronous,
control, or interrupt). From adriver’s perspective, an endpoint
isrepresented by an USB pipe. Endpoint addresses are 8 bits
where the MSB (bit 7) defines if the endpoint is an input or
output. If the M SB is set, then thisisan input endpoint, bits 6-
4 are unused and bits 3-0 are the actual endpoint number. The
termsinput and output are from the host system perspective—
data read from a USB device is from an input (input to the
host) endpoint. Data sent to a USB device is delivered to an
output endpoint. For example, an endpoint address of 0x81
defines an input endpoint address of 0x01. An address for an
input and output endpoint can be the same, they are

distinguished by their direction.

So, how are these addresses determined? By the designer of
the USB device. The OS doesn’t assign an endpoint address;
this address is contained in the endpoint descriptor that the
USB device returns. However, the USB device address is
assigned by the host controller during the initial setup phase
by the USB Set Address command.

When thinking about interfaces and endpoints, it ishelpful to
take the perspective of someone designing a USB device.
What types of interfaces and endpoints will a USB device
have? It depends on how it is designed. Therefore, when
writing your USB driver, you will need to collaborate with the

engineer working onthe USB deviceitself.

Sample USB Driver — USB Encrypt/
Decryptor device

Ansampledriver isincluded as part of thisarticle. The source
can be downloaded from www.goldenbits.com/newsl| etter/
issue2/ushsample.zip. Thissample USB deviceisan encryptor/
decyprtor device where the actual en(de)cryptor engine runs
ontheUSB deviceitsaf. The TUSB3210K DBPDK devel opment
kit from Texas I nstrument (see www.ti.com/usb) is used as our
USB device. Thiskitisintended for keyboard devices, but for
our sampledevicewe' |l ignorethe keyboard features. The Tl
part, TUSB3210, isan 8052 based deviceintended for general
purpose USB peripheral applications. T1 doesoffer other USB
peripheral devices (TUSB3410 and TUSB6250) for different
peripheral applications such as streaming audio. You can
purchasethisdevelopment kit on-linedirectly from T1 for $199.
If you' rethinking about developing aUSB device, thiskit along
with several others, offersaninexpensive way to start to start
working with USB. Theonly catchisyou'll haveto get ahold
of acompiler for the USB deviceitself. Most vendors offer

continued on page 6

http://www.goldenbits.com/newsletter/issue2/usbsample.zip
http://www.goldenbits.com/newsletter/issue2/usbsample.zip

Page 6

USB (continued)

demo compilerswith limited capability, however, afull compiler
will run you about $3,000. There are severa vendors that offer
very good development environment for your USB device
firmware. | used the Development Kit from IAR with great
success (See the IAR Compiler & Tools box below).

Asl| mentioned, the sampleisan encryptor/decryptor USB device.
The ideais to embed the actual encryption engine in the USB
deviceitself. Thisenablesauser to easily disconnect the device
and secure it as necessary (e.g., in a vault). Imagine yourself
working for the CIA and receiving encoded messages over the
internet in a cyber caféin exotic Puket, Thailand. You just came
back from scuba diving all day and you have a sexy agent by
your side. When she disappears for a moment you quickly take
your water proof (good to 300 meters) USB en/decryptor device,
plug it into the PC, and download some encrypted email, only
to find out that she's really a double agent working for the
Chinese!! The CIA doesn’'t send encrypted messages over the
internet and I’'m not a CIA spy — but what the heck it sure
sounded good, plus I’m sure we could figure out some way to
self destruct (blowup) the thing.

Our sample de(en)cryptor device has two interfaces, the first
interface is used for encrypting and the second for decrypting.
The encrypting interface has two endpoints, one to send data to
be encrypted and the second to read the encrypted data back.
The decrypting interface uses three endpoints, the first two are
used to send and received encrypted data, the third endpoint is
used by the device to send the number of bytes decrypted to the

IAR Compiler & Tools

| used the8051C compiler and workbench
with great success. Thecompiler installed
easily and within ahour | had acompile

TX - Write from app

Tech Newsletter

host. The en(de)crypt endpoints are configured to use bulk transfer,
the third endpoint is configued to use interrupt transfer.

Code Tour

Theblock diagramin Figur e 5 showsthe main functional areas of
the sample driver. The functions UsbCrypt_Write() and
UsbCrypt_Read() are the main functions called when performing
IO with the USB device. Both of these functions use
SendBulkIntTransfer(), which builds the URB and sendsit to the
lower USB busdriver (provided by Microsoft). A separate thread,
GetProgress() (implemented using a work item -
loQueueWorkltem()) isused to get the number of bytes decrypted.
GetProgress() returnsthe number of decrypted bytes, but any type
of device status can be returned. Also, note that a read from the
USB device will block if the USB device hasn't sent anything to
the host. Your driver should be able the handle this case, which
meansimplementing a cancel routine for your pending IRPs.

The code used to get the device configuration and create the
necessary USB pipesis contained in CrConfig.c. The entry point
for configuring is the function ConfigureDriver(). Theinterfaces
and pipes are created in the function Setuplnterfaces() and the
pipe handlesfor each interface are saved in the deviceextensionin
the function Savel nterfacel nfo(). The pipe handlesfor the decrypt
or encrypt interface arealso savedinthe FsContext for each open
filehandle (see UsbCrypt_Create()), thus an open handle can only
encrypt or decrypt. An application can open two file handles, one
for encrypting and one for decrypting. Storing the pipe handlesin

continued on page 7

RX - Read to app
WMI Interface

working image | could download to the
USB device.

UsbCrypt_Write()

Number bytes decrpted,
stored in device extenstion
(USB_CRYPT_EXT)

UsbCrypt_Read()

I AR has been providing embedded tools
for over 20 years; alot of experiencewhich
shows in the depth of their tools. In ad-
dition to compilers, IAR also offers
Bluetooth solutions, Visual State machine
tools, and much more.

For moreinformation about | AR you can
contact their sales representative, Rob-
ert DeOliveraat (650) 287-4250

A

Work Item thread,
constantly reads from
interrupt pipe
GetProgress()

SendBulkIntTransfer()

i

MS USB Bus Driver

Figure 5

Tech Newsletter

USB (continued)

the FsContext field isanicetechniqueto keep track of theindividual
pipes for each open handle.

You should use WMI to expose any type of device statistics, status,
and events to management applications. WMI can be a pain to
setup, but it isone of the necessary thingsto do (along with WHQL)
to provide your customersatop notch, quality driver. Inthesample
driver, WMI is used to provide the number of bytes decrypted.
The sample application readsthisinformation using the WMI COM
interfaces.

Pipe Handles

Most of the documentation regarding USB
programming, usually showsanice layered approach;
you client driver sitting ontop of the M S provided bus
driver with pipe handlesproviding thelogica connection
to your endpoint. So, whilethingsarenicely layeredin
the Windows OS, on the device side it’s different.
Usually USB devices are embedded systems, without
layersof drivers- there'sno concept of apipehandle.
For example, the TI USB device simply generates an
interrupt whenever a packet is received on a specific
endpoint —that’sit. A pipe handleisreally aWindows
abstraction of aUSB device endpoint.

User Application

The accompanying sample application sends data to the USB
deviceto be encrypted or decrypted. In this sample, only 20 bytes
are sent a one time. A real product should be able to handle an
arbitrary large number of bytes. The radio buttons select the
en(de)crypt function, if decrypting the number of bytes decrypted
by the USB deviceisasoretrieved using the WMI COM interface.
Thefunction ConnectToWM () and GetDecryptBytes() handlethe
WMI COM details. On start-up, the application opens ahandle to
the USB device. Note that reading and writing data is done using
thestandard Win32 APl callsRead File() and WriteFile() calls (which

used by the MFC CFile class).

Page 7
&%z Cryptapp [x] |
Y'ou are currently decrypting
¢ Enciypt
¥ Decrypt

Hurnber bytes decropted: 120

Exit |

i Send data to device

Screen shot of sample application

Summary

Thisarticledescribes USB and how to implement aWindows USB
devicedriver. Now you have enough information to start writing
aUSB driver, or, at aminimum, be ableto explain to your manager
what it will take. Just remember: 1) descriptorsarejust C language
structures used by the USB device to describe itself and its
capabilities, 2) the organization of interfaces and endpointsisup
toyou, 3) pipe handlesrepresent endpoints, and 4) WMI isapain,
but necessary to provide a professional polished product.

References

USB Complete, Second Edition by Jan Axelson.
Lakeview Research.

Programming the MS Windows Driver Model,
Second Edition by Walter Oney. Microsoft Press.

Windows DDK documentation

www.usb.org

www.diving.phuket.com - Diving in Thailand

www.cia.gov/employment/clandestine.html. For
information on how to apply for a spy position.
Interestingly, | don't recall James Bond - Agent 007
filling out an application online.

Page 8

.NET TOp 5 (continued)

private variables. You need both; the desired feature with the
necessary functionality.

Whilethisisjust abeginning, and some peoplewill debate the merits
of theindividual items, it doesrepresent what | refer to asthetop 5
featuresand functions.

1. Threading

The .NET framework providesuswith afull set of threading options
including an asynchronous call mechanismwhichisn’ttruly athread,
but does provide thread like functionality. Thetwo main framework
classesthat providethread support are System.Threading.Thread
and System.Threading.ThreadPool. Thedifference betweenthetwo
istheamount of thread management your code will haveto perform.
Using the Thread class your code is responsible for managing the

Thecall to queueawork item to the thread pool:
ThreadPool.QueueUserWorkltem(new WaitCallback(ThreadPool Func));
/I actual code that gets run in thread pool

public static void ThreadPool Func(object state)
{

/I Here is the actual thread, you would perform your
/I thread work here

}
Code snippet to create threads directly:

Thread OneThread = new Thread(new ThreadStart(ThreadFunc));

/I threads are initially started paused
OneThread.Start();

/I actual thread code
public static void ThreadFunc()
{
}

Figurel

creation, running, and stopping of athread; whereas, the Thr eadPool
classdoesall of thiswork for you. A thread inthe .NET framework is
ultimately implemented as an operating system thread within a
process and can be viewed using the PVIEW utility. Figure 1
contains C# code snippets on how a thread is created using the
Thread and ThreadPool class. What'sinteresting when you compare
thetwo classesisthat you' |l noticethereisno “ Start” method inthe
ThreadPool class. Thismakes sense because the ThreadPool class
manages creating, starting, and stopping the threads.

Both classes use delegates for the actual implementation of the
thread itself. The code you wish to executein thethread is contained
in the delegate. A delegate is a C# object that you can think of asa
type safe function pointer. In addition to methods used to manage
the thread, the Thread class contains properties such as apartment
type, culture (my personal favorite), and state (running, suspended,

Tech Newsletter

etc). One subtlethread property isThread.CurrentPrincipal that
enables you to define the security context for the thread. What
happens sometimes is that your code runs great during
development, but fails on a customer system because the
customer islogged in with adifferent security context than what
you assumed. Therefore, you might have to set the security
context accordingly.

Which threading class should you use? It depends on the task.
A perfect place to use athread pool isin server code when you
areservicing client requests. Aseach client request isreceived, it
is queued to the thread pool as awork item. Alternately, if you
need to control your threads, then you will want tousethe Thread
class. For example, if you need to coordinate the flow of processing
between each thread as in a producer and consumer scenario.
You might have to pause the producer thread, enabling the
consumer thread catch up.

Threads need datato work on. For both Thread and ThreadPool
classes per thread datais encapsulated in a C# object that isthen
passed as argument to the thread. The thread itself can allocate
memory as needed, and as expected, local variablesare allocated
on the stack and are thread safe. Figure 2 shows how thread
data is passed to a Thread and ThreadPool class. A word of
caution when using threads: when athread is used in a GUI to
perform some background task, you will have to marshall your
information back to the GUI. You can not make callsdirectly into
the GUI class (Windowsform class) because the Windowsforms
is by default single threaded. Only the thread that created the
window can operate on it directly.

The .NET framework provides support for asynchronous calls.
You can think of asynchronous calls as one shot threading,

continued on page 9

public class MyThreadWorkerClass {

int Data;
byte [] MoreData[100];
void ThreadFunctionr() {
/I loop through data
for(cnt = 0; cnt < 100; cnt++)

MoreData[nCnt] = 0x88;
}
}
}

MyThreadWorkerClass WorkThread = new MyThreadWorkerClass,
/I fill in thread data
WorkThread.Data = 12;
Thread OneThread = new ThreadStart (
MyThreadWorker. ThreadFunction);

OneThread. Start();

Figure 2

Tech Newsletter

.NET TOp 5 (continued)

meaning the call itself is executed in a separate thread provide by
the .NET framework. The cool thing about asynchronous callsis
that it's built into the C# language itself. With asynchronous
programming, you create two logical items: a worker class and
callback. The worker class is the code which performs the actual
asynchronous work. The callback is what the worker calls when
the async is complete. The actual ascync calls are implement by
the C# compiler.

2. Locking

The .NET framework contains two locking features: monitor and
mutex. The Monitor classis used for quick lightweight locking
within aprocess and the M utex classisused for locking within or
across process boundaries.

One of the new features of .NET is built in support for locking;
every object created by the .NET framework has an associated
locking structure! TheM onitor classusesthisstructureto provide
the actual lock for your critical section of code This makes
implementing and using locking very simple, you don't haveto worry
about creating and initializingaCRITICAL_SECTION, thelocking
structures are automatically in place.

As| aready mentioned, locking isbuilt into the .NET framework
directly, the C#lock keyword automatically implements amonitor
lock. Figur e 3 shows how the lock keyword is used.

Creating a locking structure for every object can be a waste of
resources since most objects do not require any locking. To solve
thisproblem, the .NET runtime keeps a cache of locking structures
that is uses as needed. For more information about this cache and
Monitors, | recommend you read Jeffery Richter’s article about
the Monitor class, MSDN Magazine, January 2003, “ Safe Thread
Synchronization.”

Mutexsin .NET work the sameasWin32. Mutexsareimplemented
by the Mutex class, can be either named or unnamed, can be
acquired recursively, are owned by athread, and are signaled when
thisownershipisreleased. Mutexs can also be used across process
boundaries enabling you to share resources (like shared memory)
between two processes (even an unmanaged process). For example,
if you have aservicethat isaways running and you need to share
accessto acommon datastructurein shared memory, then anamed
mutex is the mechanism you should use.

3. Memory Management

.NET application memory is managed by the runtime engine. Your
code does not have to worry about releasing memory, the runtime
tracksyour objectslifetime and will free up memory as necessary.
When a .NET application is started, the runtime allocates a

Page 9

public class My?hreadWorkerCIass{

/I fill in thread data
WorkThread.Data = 12;
Thread OneThread = new ThreadStart (
MyThreadWorker. ThreadFunction);
OneThread. Start();

public class MyThreadWorkerClass {
Lock() { code chunk, sectionto protect }

}

Very nice, sinceyou don’t haveto worry about freeing the
lock.

Figure 3

contiguous region of memory, called the heap. When reference
types (your classes) are created, they are allocated from this
heap. Allocationsare done starting at the beginning of heap free
space and continue in a linear fashion. On startup, a pointer is
initialized to the beginning of the heap. When an allocation of N
bytes is required, this pointer is simply advanced by N bytes
thereby pointing to the remaining free heap memory. Allocating
memory thisway isvery fast, but at some point the runtime needs
to reclaim unused memory.

The runtime uses several techniques for releasing of unused
memory. Thisistypically referred to as garbage collection. The
runtimemaintainsaset of graphsrepresenting the all ocationsaong
with generation numbers. If an object is contained in the graph,
then it is referenced in some way and should not be released,
otherwise the object’s memory is released. Generations are
interesting, they are based on the observed fact that the most
recently allocated memory is usually short lived. The runtime
uses 3 generations, 0, 1, 2, to track the age of each allocation.
Generations are used as an optimization when the runtime
performs garbage collection. When the runtime starts garbage
collection, it will first examine memory allocations bel onging to
generation 0, since these are most likely to be short lived. If not
enough memory is freed, the runtime continues checking
generations 1 and 2.

After all of the memory has been released, the remaining obj ects
are then compacted and shuffled on the heap in such away asto
create a contiguous free area of heap for new allocations. This
means that some of the pointers to your objects will no longer
point avalid object! The runtime does “fixup” your pointers so
they point to the correct object after reshuffling the heap, but
how can the runtime do this while your code is executing? The

continued on page 10

Page 10

.NET TOp 5 (continued)

answer, theruntime pausesall of your threads. Oh boy!! Yes, garbage
collection isan expensive operation.

The runtime garbage collection is exposed to applications by the
System.GC class. This gives your application some control over
how and when garbage collection is performed. You can force
garbage collection to occur using the Collect(). Thisishandy when
you know that alot of memory has been freed and is ready to be
collect. For example, if your applicationis manipulating large bitmaps,
you might want to force a collection after a bitmap is freed. The
K eepAlive() method tell sthe garbage collector not to free an object.

Theruntime garbage collection only knows how to rel ease managed
items. If your managed classis using an unmanaged resource, then
you have to explicitly free the resource. An example isif a class
opened anamed pipe (an unmanaged resource), then this handle must
be closed by the class. To ensure resources are freed, you should
implement a Dispose() or add a Finalize() to your class. The
Dispose() method is from the | Disposable interface and intended
for consumersof your classto explicitly call. The Finalize() iscalled
by the garbage collector before rel easing the objects memory giving
the object a chance to clean up. In C# a finalize method is
implemented using syntax similar to adestructor in C++. The syntax
for C#is.

public MyClass{
publicMyClass() {};
public~MyClass{}
{
...clean up code here...
}
}

A couple of addition pointsto understand about garbage collection;
garbage collectionis performed at unknown time and Finalize() code
isrun on an separate thread within the runtime.

4. File Manipulation

Almost always you have to save your application data to some
type of persistent storage, this usually means writing your data to
adisk file. Well, things haven't changed with .NET (some things
never do!). However some of the details are taken care of by the
framework and there’s a new option for storing data — Isolated
Storage. One of the goals of the .NET framework is to isolate the
application from any platform specifics, thefile |O implementation
reflects this goal. The .NET framework implements two types of
storage models; streams and isolated storage. These models are
implemented by the classes System.lO.Stream and
System.l O.IsolatedStor age.| solated-Sorage

Tech Newsletter

The Stream classisreally an abstract classthat cannot be used
directly, you must use a class derived from the Steam class.
Useof thisabstract classresultsin aconsistent interface across
all of the derived classesthat implement file 10. The beauty of
thisis your application can behave the same regardless of the
type of underlying storage type, file structure, or network
connection —you just don't care. For example, if you need to
export data from your application into different formats, you
can implement a class for each format type, such as coma
separated, DB, or table. This“format” classwould derivefrom
the Stream class and handle al of the details of formatting
your data. How isthis beautiful ? Regardless of the format, the
application doesn't change its behavior.

The FileStream class most closely follows the traditional file
IO system calls that we' re accustom to using: open(), close(),
read(), write(), and seek(). The methods Read(), Write(), Seek(),
and Closg() arethe FileStream equivalents (open() ishandled in
the FileStream constructor).

Aninteresting 1O classisMemoryStream. Likeall O classes,
MemoryStream class provides the ability to read, write, and
seek, the different is the underlying storage is memory. This
classis perfect if you need to cache application data, you can
cacheyour datainthe sameformat asit persistsondisk. There's
no need to create a special cache structure!!

Isolated Storage

For most of us, isolated storage is new way of thinking about
datastorage. Traditionally, wethink of storing application data
infiles, files that have a specific location in afile system. By
convention, applicationstypically store datain common places
suchas“C:\My Documents’ or “H:\My Network Location”. This
approach workswell with aPC centric model of theworld, but
the Web has changed the world and this old PC model. People
are now connecting to their application using vastly different
methods, from web pages, wireless, cell phones, and PDAS.
Stitching together the program framework for this remote and
loosely connected world is one of the major goals of .NET.

Now that we have the context in which | solated storageisused
for, just exactly what is Isolated storage? |solated storage is
one of thepiecesin .NET that solvesakey problem with remote
users. How can you isolate your application data to avoid
corruption and provide security? How to uniquely identify your
data, and how do you support roaming users? Isolated storage
provides the mechanism to store and associate data with some
property of your program such as assembly, domain, web site,
or user. Isolated storage enables you to create files and
directorieswithin the stor ewithout concern to the underlying
system. Another way to think about isolated storageis asyour

continued on page 11

Tech Newsletter

.NET TOp 5 (continued)

own private file system, uniquely identified by assembly, user,
web address, domain or other. The key point is these properties
are part of your code no matter where the code executed from.
This unique identification is one of the parts the runtime uses to
actually isolate your data. A word of caution: Isolated storage
should not be used to store confidential information.

Isolated storage is implemented by the
System.| O.IsolatedSor age.l solatedSor ageclass. LiketheSream
class, the I solatedStorage class is an abstract class that cannot
be used directly. You will need to used on the derived classes, in
most cases | solatedStor ageFileStream class is adequate for the
task. |solatedSor ageFileSream isderived fromthe Stream class,
likethe FileStream class mentioned earlier, your code performsall
of the stream operations (read, write, seek). Thisisthe beauty of
the Sream class, your code behaves the same.

5. Network Communication

It'sawired world and the .NET framework providesavery complete
set of classes that enable an application to easily perform any
network task. Networking isone of the .NET framework strengths.
All of the networking classesare contained in the System.Net and
System.Net.Sockets namespaces. The System.Net namespace
contains classes for using popular network protocols such as
HTTPand FTP In addition to protocol support, there are classes
to handle network certificates, security, connection management,
and proxies.

Protocol classesare derived from the abstract classes WebRequest
and WebResponse and are referred to as “pluggable protocols”.
What pluggable means is, each protocol is registered with the
framework and identified by the Uniform Resource ldentifier (URI)
used in a request. URI’'s essentially define a way to locate
resourceson theinternet, for example: http://www.goldenbits.com
isaURI for the Golden Bitsweb page. Another exampleof aURI is
ftp://ftp.microsoft.com, the URI for the Microsoft FTP server.
When a request is made using WebRequest.Create(), the URI

used in the call determines which protocol is returned.

You can also add your own protocol to the runtime by using the
Register Prefix(). The HttpWebRequest and HttpWebResponse
are used to send and receive http messagesto a server. All of the
detailsof the HTTP protocol are handled by these classes, making
adding web accessabreeze.

The class System.Net.Sockets implements the socket library,
Winsock, which the majority of applications use. The semantics
of the Sockets class follows the socket model (originally BSD
sockets); server listening for connections while clients connect.

Page 11

TheTcpClient and TepListener classesimplement thismodel.
TheTcpListener classwill returnaTcpClient whenaconnection
isaccepted, the TcpClient.GetSream() method isthen usedto
get a NetworkStream class for the connection. The
NetworkStream class is what is used to perform the actual
transfer of data across the connection. What is interesting is
that Networ kStream classisderived from the System.| O.Sream
class, the same class used for file 1O!!. Very cool. This means
your application doesn’t have to implement a different set of
classes or techniques to handle network traffic. Also,
asynchronous 10 ishandled the sameway for filesand network
connections. Therefore, the .NET framework provides a
uniformed model for 10, whichisoneof the .NET design goals.
Figure 4 shows how server code would [ook.

The UdpClient class implements UDP protocol. Thisclassis
used to send and receive UDP packets and broadcast messages.
You can al so manage multicast groupswith thisclass.

Summary

So thereyou haveit -- The .NET Top 5, David L etterman
would be proud. You can download sample .NET code from
www.goldenbits.com/newsl etter/issue2/nettop5.zip.

http://www.goldenbits.com/newsletter/issue2/nettop5.zip

Page 12 Tech Newsletter

.NET TOp 5 (continued)

byte [JReadBuff = new byte[100]; Notes -
/I listen on port 13500, noting special about
/[this port number, just random
TepListener Listen = new TcpListener(13500);

/I start listening
Listen.Start();

/I listen for connections
TepClient ConClient = Listen.AcceptTcpClient();

/I got connection at this point

/I get network stream
NetworkStream ConStrm = ConClient.GetStream();

/I read some bytes off stream
(ConStrm.Read(ReadBuff, 0, 100);

/I al done, close
Listen.Stop();
ConStrm.Close();
ConClient.Close();

Figure4

Project Experience - Several projects Golden Bits has successfuly completed.

SCSI Port driver for Fibre Channel. Designed the operating system layer for a SCSI storage driver (XP, Win2K, NT, Linux)
for a fibre channel HBA (host bus adapter — PCI/SBUS card).

Embedded Network Appliance. Developed an embedded monitoring device for web sites and/or other data center systems.
The device uses uC/OS real time kernel running on Motorola ColdFire processor (MCF5206¢).

WDM, NDIS Device Drivers . Developed a WDM and NDIS device driver for a prototype wireless system.

Parallel Search Engine. Developed a search engine that distributes database query to other systems; the search runs in
parallel on the supporting systems and the results are written (through bulk inserts) back into the database.

Satellite Set Top Box. Developed a script language and compiler used to code the television Ul (guide menus, channel select).

Camera Control. Wrote highly customized Windows user interface with special graphics and custom controls. The application
presents the user with camera images with graphic information overlaid (in near real time), camera configuration information,
and product inspection information.

Embedded TCP/IP Protocol Stack. Wrote a NT packet driver using NDIS driver subsystem to simulate a mobile network for
a military application. The embedded stack executed under NT, and the packet driver simulated network device 1O.

Tech Newsletter Page 13

Il x|

Exit
~ Threads —hemaory Allocations
Murnber of threads to create: 1 = 1.000 :I
Allocate Memo
" tanage Threads il
Fun Garbage Collection
llge Thread Poal
r : While viewing task manager, keep allocating large
Async function calls chunks (1MB) of rmemory. You'll see the memony
: usage go up to a certain level and stop. Why stop?
Start Threads | Because as you allocate new memaorny the runtime
frees wour previously unused allocations.
—File 10 —MNetwark [0
Selectfenterfile to create: This starts & TCF server and client. The client will
I | then send test ytes owver the connection
- Lse lsolated Star connection
Storage
YWrite ta file
Fead from file

Copyright () Golden Bits Software, [nc. 2003, All rights resered.

Status

Screen shot of GUI demonstrating .NET Top 5

What is 2+2?
An accountant will say “What do you want the answer to be?’ A mathematician will say “1 believeitis4, but | will haveto proveit.” A
statistician will say “The populationistoo small to give an accurate answer, but on the basis of the data supplied the answer lies

between 3and 5.” An economist will say “Based on today’sthinking, the answer is4 but the answer may be different tomorrow” . An
engineer will say “ Theanswer is4, but adding asafety factor wewill call it 5”.

The Car

Therewerethree engineersin acar; an el ectrical engineer, achemical engineer, and aMicrosoft engineer.Suddenly, the car stops
running and they pull off to the side of the road wondering what could be wrong.The electrical engineer suggests stripping down the
electronics of the car and trying to trace where afault may have occurred. The chemical engineer, not knowing much about cars,
suggests maybe the fuel isbecoming emulsified and getting bl ocked somewhere. The Microsoft engineer, not knowing much about
anything, came up with asuggestion. “Why don’t we close all thewindows, get out, get back in, and open al thewindows and seeif it
works?’

