
Volume 1  Issue  2

Golden Bits Software, Inc.
3525 Del Mar Heights Rd, Suite 158
San Diego, CA 92130
858.259.3870  phone
858.259.7655  fax

socket connections?”. This article discusses what I
call .NET Top 5 Features and Functions.

Depending on what you’re developing, there are
common features that must provide certain function-
ality that you can rely on to enable you to develop a
solid software system. These features and associated
functionality may be supplied by the operating
system, runtime environment, or some external
module. What are the top 5 features? 1) Threading,
2) locking, 3) memory management, 4) file
manipulation, and 5) network communications. What
do I mean by functionality? For example: a locking
primitive will in fact enforce only a single access
(serialized access if you will) to a critical section of
code or data structure, or that a thread can have

Download sample code from www.goldenbits.com/
newsletter/issue2/nettop5.zip

Whenever you look at any new technology, you
instinctively look for specific features and
functionality that you know you need to develop
your application, embedded system, or network
utility. These are features and functions that you’ve
relied on in the past and can’t do without.  You start
asking yourself questions like: “I did a thread pool
in C using the WIN32 API for a one of our modules.
How is this done in .NET?” Or “If I have to port our
monster application to .NET, how will I manage 100

Volume 1, Issue 2, Winter 2004

Tech Newsletter
Golden Bits(R) Software, Inc.

.NET Top 5

In this issue:
• USB Device Driver
Published in the April
issue of Dr. Dobbs
Magazine

• .NET Top 5

(Both with sample code)

Golden Bits(R) is a software engineering
firm providing consulting services in a
wide range of diverse technologies:
• Windows, Linux
• Device Drivers, Embedded Systems
• Database, TCP/IP, GUIs

See page 12 for past projects
www.goldenbits.com.

continued on page 2

Technologies
• Fibre channel
• Device drivers
• COM/DCOM
• Database, SQL
• C/C++
• SCSI
• GUIs/MFC/.NET

Copyright (c) 2002-2004
Golden Bits Software, Inc.

continued on page 8

USB Device Driver for Windows
The details about Windows USB device drivers

This article is featured in the April issue
of Dr. Dobbs Magazine.   To view online
go to:  www.ddj.com/articles/2004/0404/

Introduction

USB devices have become very popular. Products
that use USB such as MP3 players, digital cameras,

and removal flash storage
are now commonplace.
Your next PC will probably
use USB to connect your
keyboard and mouse. What
has made USB so popular
is its low cost, flexibility,
and especially its ease of use
– you just plug your device
into your PC.

This article discusses the details of writing an USB
device driver for Windows.  A working sample driver
is can be downloaded from www.goldenbits.com/
newsletter/issue2/usbsample.zip.

USB Technology

Before we dive into the driver itself, it is very helpful
to understand some of the basics of USB technol-
ogy. USB is a serial bus (there are only 4 signals)
organized in a hierarchal manner – a basic tree struc-
ture. The tree can be extended by the addition of
hubs, and each hub can support additional devices.
USB can support up to 127 devices, but in practice
the most I’ve ever seen is four devices. At the top of
the tree is the root hub and host controller that con-
trols all of the device configuration and traffic on
the bus.  Figure 1 shows the USB topology.

Top 5 Features and Functions You'll Need

http://www.goldenbits.com/newsletter/issue2/usbsample.zip
http://www.goldenbits.com/newsletter/issue2/usbsample.zip
http://www.goldenbits.com/
http://www.goldenbits.com/newsletter/issue2/nettop5.zip
http://www.goldenbits.com/newsletter/issue2/nettop5.zip


Page 2 Tech Newsletter

Host
Root Hub

Hub 1 Keyboard
Device

Mouse
Device

CD Burner Hub 2

Speakers Video

Figure 1

USB is a polled bus, which means the controller constantly polls all of
the devices to see if the device has any data to transfer to the host
and to also to initiate a transfer to the device. This polling enables the
root hub/controller to control the bandwidth of the bus, which is
important when performing isochronous transfers. During an initial
setup phase, each device on the bus is assigned an address by the root
hub when it connects. During this phase the device reports its con-
figuration using a set of data structures called descriptors: the device,

configuration, interface, and endpoint descriptors.

The device descriptor contains the vendor and product IDs,
which is how the Windows PNP manager knows which USB
driver to load. The configuration, interface, and endpoint
descriptors describe how your device wishes to be connected
to the bus itself. The actual connections are called endpoints
and represent a unidirectional destination or source of data
between the device and the host. To send and receive data,
you will need two endpoints, one output to the device, and one
input from the device. These descriptors are almost always
predefined in the device’s firmware (EEPROM or other). How
your driver uses these descriptors is examined later in this
article.

Data and control messages are transferred in one or more
individual transactions. Transactions themselves are contained
within a frame (low speed) or micro frame (high speed), a frame
can contain multiple transactions.  If the amount of data will
not fit into one transaction, then it is broken up into multiple
transactions over several frames. The frames are either 1
millisecond (low speed bus) or 125 microseconds (high speed
bus) in duration. The host controller schedules all of the
transactions and frames. One simple way to think about this
process is each frame is a train with a fixed number of cargo
cars, where each car contains a transaction; the host controller
schedules these trains and fills the cars as necessary. This is a
silly example, but I think it gets the point across.

USB (continued)

kluB ,sksidrofdesU.noitcerrocrorre,atadfossolon,atadfostoL
.srennacs,retnirp

suonorhcosI evresernac,noitcerrocrorreon,etaryrevileddeetnaraug,yssoL
.oediv,oiduarofdesU.htdiwdnab

tpurretnI rorre,etargnillopdeetnaraug,tsohotatadsuonorhcnysA
s.ecivedtupnirofyllausU.noitcerroc

lortnoC rorre,sezisatadllamsylevitaler,segassemputes,noitarugifnoC
.noitarugifnocdnaputesrofdesU.noitcerroc

Tech Newsletter published by Golden Bits Software, Inc. Copyright (c) 2002-4. All rights reserved.

Disclaimer: All  material is presented "as  is" without warranty of any kind, either expressed or implied, including,
without limitation, the implied warranties of merchantability or fitness for a particular purpose.  Golden Bits shall not be
liable for any damages whatsoever related to the use of any information presented in  these materials. The sample code
provided is just that, samples and is not intended for any commercial use. The information presented is as accurate as
possible, however mistakes can and do happen.  Please inform Golden Bits by email with any errors. Golden Bits shall
not be responsible for any damages owing to editorial errors.

continued on page 3

Table 1



Page 3Tech Newsletter

USB defines four types of transfers: bulk, isochronous, interrupt, and
control. These transfer types provides the designer of a USB device
a nice selection of options, meaning depending on the type of device,
you can select the appropriate transfer type. For example, a USB
keyboard does not need the bandwidth of a bulk transfer.

Each type of transfer and its characteristics are summarized in
Table 1. The use of descriptors, support of different transfer types,
and configurable nature make USB very flexible; you can connect
almost any conceivable device. Since the USB bus interface is very
flexible and can support a wide range of devices, you can think of it as
the Swiss Army knife of sorts. So, there’s your extremely quick tour
of USB. The key items that relate directly to device drivers are:

! Endpoints are unidirectional. Therefore, you can’t send data on
an inbound pipe.

! Endpoints are mapped to pipe handles. The pipe handle is what
you use to transmit and receive data.
! Transfer Types affect how much data you can send and if you
can lose data.

! Descriptors, interfaces, and endpoints.

The current USB specification is version 2.0 and can be
found at: www.usb.org.

USB Implementation on Windows

Microsoft provides a full stack of drivers for USB bus support;
you just have to write a driver for your own USB device.
Microsoft also provides a set of class drivers for audio,
network, storage, printer, and HID (Human Input Device –
fancy name for a mouse or keyboard). Support for these types
of USB devices enables your device to easily fit into a specific
device class. For example, if you have a USB disk drive, the
fact the drive is located on a USB bus in transparent to the
system. The MS supplied usbstor.sys handles all of the details
of presenting the disk driver to the SCSI Port driver. Depending
on the type of device, you may not have to even write a driver
for your USB device, as is the case for audio devices (your
USB device has to be compliant with USB Audio spec 1.0).

The USB driver stacks (i.e., driver layers) are different for
Windows 2000 and XP/2003. The two main differences
between the driver stacks are: 1) Windows XP/2003 supports
high speed (USB 2.0 spec) devices and 2) includes a new generic

USB (continued)

Host controller driver
usbd.sys

uchd.sys or openhci.sys

Usbd.sys is a port driver
that will load  uchd.sys or

openchi.sys mini port
drivers.

USB Hub driver
usbhub.sys

Client driver
(this what you write)

Figure 2 - USB Driver Stacks

Windows XP/2003 USB Driver Stack

Host controller driver
usbport.sys

usbuhic.sys, usbohic.sys,
usbehic.sys

Usbport.sys is a port driver that will
load  usbuhic.sys, usbohic.sys,

usbehic.sys (for high speed
devices)

mini port drivers.

USB Hub driver
usbhub.sys

Client driver
single interface

Client driver
Interface 1

Client driver
Interface 2

Generic Parent driver
usbccgp.sys

The generic handles usb devices with
multiple interfaces.  The device will be
treated as a composite device and each
interface will be refered to as a function.
The generic parent driver will create a PDO
for each interface

continued on page 4

Windows 2000 USB Driver Stack



Tech NewsletterPage 4

parent driver (usbccgp.sys) to support devices that expose multiple
interfaces. The new generic parent driver solves the problem of
managing separate function drivers for composite USB devices.
For example, if you designed a new digital camera that could both
take pictures and capture real time, you may want a separate driver
for each function: one driver to download pictures and another driver
to display real time video on the screen. Figure 2 shows the USB
driver stack for Windows 2000 and Windows XP/2003.

Your USB device is identified by a unique vendor and product ID
which are managed by the USB-Implementers Forum, Inc.  The cost
of a vendor ID is $1,500 - $2,500 depending if you become a member
of the USB-IF organization (see www.usb.org/developers/vendor).
In addition to getting a vendor ID, you will probably want your device
to be certified by USB-IF and pass Windows WHQL testing.

The vendor ID string is identical to how PCI devices are identified,
the format of the USB vendor id string is: USB/
VID_XXXX&PID_ZZZZ, where XXXX and ZZZZ are the vendor
and product IDs. This information is sent to the host system, as
part of the device descriptor, during the device setup phase. The
Windows OS searches the list of installed drivers looking for a
matching vendor and product ID - your driver’s install .INF file
should contain these numbers.

Descriptors Everywhere

One of the most confusing aspects of writing a USB driver is
understanding all of the descriptors (device, configuration,
interface, and endpoint), what they are used for, and how your
driver manages them. The DDK documentation is a bit confusing.
After reading the documentation four times, I still had the uneasy
feeling I didn’t understand exactly how these descriptors are
used. Hopefully, I can do a better job than the DDK – so here it
goes.

A descriptor is nothing more that a data structure. It’s not a
handle or some other unique object. When the designers of the
USB standard tired to figure out a flexible and extensible way of
configuring a USB device, they defined a set of data structures
(the descriptors) that a USB device would present to describe
itself and its capabilities. A USB device has one device descriptor
that describes the device as a whole. This descriptor contains
the vendor and product ID and the number of configurations.
Each configuration is described by a configuration descriptor.
The USB standard allows for multiple configurations, but in
practice only one is used (the Microsoft USB class drivers only
support the first configuration).  Each configuration contains a
set of interface descriptors where each interface defines a set of
endpoints. It is these endpoints that your driver will communicate
with. Your driver code will ultimately use a pipe handle to send/

USB (continued)

Device Desc

Config Desc

Interface 0 Desc

Endpoint 0

Endpoint 1

..... n number
of endpoints

Interface 1 Desc

If your device has
multiple interfaces

Logical view of descriptors

Figure 3

In memory layout of descriptors

struct USB_DEVICE_DESCRIPTOR

struct  USB_CONFIGURATION_DESCRIPTOR

struct  USB_INTERFACE_DESCRIPTOR

struct  USB_ENDPOINT_DESCRIPTOR

struct  USB_ENDPOINT_DESCRIPTOR

The USB structures are
defined in USB100.h

continued on page 5



Tech Newsletter Page 5

receive data with a USB device, the pipe handle actually represents an
endpoint.

When your driver gets the USB device configuration, these descriptors
are returned to your driver (through a call to the Microsoft USB bus
driver) in a chunk of memory containing a continuous list of descriptors.
Here is one of the confusing parts of the DDK documentation: the
DDK describes how to get this descriptor list but doesn’t do a good
job in explaining exactly what you’ve got. Figure 3 shows what you
have. The important piece in all of this is the interface and endpoint
descriptors. These are the descriptors that define how your driver
talks to the USB device.

Interfaces and Endpoints

A USB device defines one or more interfaces where each interface
describes one or more endpoints. What does this mean? Essentially,
an interface is a logical grouping of endpoints. You should group
similar endpoints into the same interface. In the accompanying sample
driver, the encryption and decryption functions are contained in
separate interfaces. As another example, you could design a USB
device to perform encryption/decryption and compression/
decompression where the en(de)cryption and (de) compression are
contained in separate interfaces. Figure 4 illustrates how interface
and endpoints are logically organized.

An endpoint is a source or destination of data that your driver
will read from or write to. Endpoints are unidirectional, have a
unique address, and have a transfer type (bulk, isochronous,
control, or interrupt).  From a driver’s perspective, an endpoint
is represented by an USB pipe. Endpoint addresses are 8 bits
where the MSB (bit 7) defines if the endpoint is an input or
output. If the MSB is set, then this is an input endpoint, bits 6-
4 are unused and bits 3-0 are the actual endpoint number. The
terms input and output are from the host system perspective –
data read from a USB device is from an input (input to the
host) endpoint. Data sent to a USB device is delivered to an
output endpoint. For example, an endpoint address of 0x81
defines an input endpoint address of 0x01. An address for an
input and output endpoint can be the same, they are
distinguished by their direction.

So, how are these addresses determined? By the designer of
the USB device. The OS doesn’t assign an endpoint address;
this address is contained in the endpoint descriptor that the
USB device returns. However, the USB device address is
assigned by the host controller during the initial setup phase
by the USB Set Address command.

When thinking about interfaces and endpoints, it is helpful to
take the perspective of someone designing a USB device.
What types of interfaces and endpoints will a USB device
have? It depends on how it is designed. Therefore, when
writing your USB driver, you will need to collaborate with the
engineer working on the USB device itself.

Sample USB Driver – USB Encrypt/
Decryptor device

An sample driver is included as part of this article. The source
can be downloaded from www.goldenbits.com/newsletter/
issue2/usbsample.zip. This sample USB device is an encryptor/
decyprtor device where the actual en(de)cryptor engine runs
on the USB device itself. The TUSB3210KDBPDK development
kit from Texas Instrument (see www.ti.com/usb) is used as our
USB device. This kit is intended for keyboard devices, but for
our sample device we’ll ignore the keyboard features. The TI
part, TUSB3210, is an 8052 based device intended for general
purpose USB peripheral applications. TI does offer other USB
peripheral devices (TUSB3410 and TUSB6250) for different
peripheral applications such as streaming audio. You can
purchase this development kit on-line directly from TI for $199.
If you’re thinking about developing a USB device, this kit along
with several others, offers an inexpensive way to start to start
working with USB. The only catch is you’ll have to get a hold
of a compiler for the USB device itself.  Most vendors offer

Configuration

Interface 1

Interface 2

Endpoints

Figure 4

USB (continued)

continued on page 6

http://www.goldenbits.com/newsletter/issue2/usbsample.zip
http://www.goldenbits.com/newsletter/issue2/usbsample.zip


Tech NewsletterPage 6

demo compilers with limited capability, however, a full compiler
will run you about $3,000. There are several vendors that offer
very good development environment for your USB device
firmware.  I used the Development Kit from IAR with great
success (See the IAR Compiler & Tools box below).

As I mentioned, the sample is an encryptor/decryptor USB device.
The idea is to embed the actual encryption engine in the USB
device itself. This enables a user to easily disconnect the device
and secure it as necessary (e.g., in a vault). Imagine yourself
working for the CIA and receiving encoded messages over the
internet in a cyber café in exotic Puket, Thailand. You just came
back from scuba diving all day and you have a sexy agent by
your side. When she disappears for a moment you quickly take
your waterproof (good to 300 meters) USB en/decryptor device,
plug it into the PC, and download some encrypted email, only
to find out that she’s really a double agent working for the
Chinese!! The CIA doesn’t send encrypted messages over the
internet and I’m not a CIA spy — but what the heck it sure
sounded good, plus I’m sure we could figure out some way to
self destruct (blowup) the thing.

Our sample de(en)cryptor device has two interfaces, the first
interface is used for encrypting and the second for decrypting.
The encrypting interface has two endpoints, one to send data to
be encrypted and the second to read the encrypted data back.
The decrypting interface uses three endpoints, the first two are
used to send and received encrypted data, the third endpoint is
used by the device to send the number of bytes decrypted to the

host. The en(de)crypt endpoints are configured to use bulk transfer,
the third endpoint is configued to use interrupt transfer.

Code Tour

The block diagram in Figure 5 shows the main functional areas of
the sample driver. The functions UsbCrypt_Write() and
UsbCrypt_Read() are the main functions called when performing
IO with the USB device. Both of these functions use
SendBulkIntTransfer(), which builds the URB and sends it to the
lower USB bus driver (provided by Microsoft).  A separate thread,
GetProgress() (implemented using a work item -
IoQueueWorkItem()) is used to get the number of bytes decrypted.
GetProgress() returns the number of decrypted bytes, but any type
of device status can be returned. Also, note that a read from the
USB device will block if the USB device hasn't sent anything to
the host. Your driver should be able the handle this case, which
means implementing a cancel routine for your pending IRPs.

The code used to get the device configuration and create the
necessary USB pipes is contained in CrConfig.c. The entry point
for configuring is the function ConfigureDriver(). The interfaces
and pipes are created in the function SetupInterfaces() and the
pipe handles for each interface are saved in the device extension in
the function SaveInterfaceInfo(). The pipe handles for the decrypt
or encrypt interface   are also saved in the FsContext for each open
file handle (see UsbCrypt_Create()), thus an open handle can only
encrypt or decrypt. An application can open two file handles, one
for encrypting and one for decrypting. Storing the pipe handles in

USB (continued)

UsbCrypt_Write()

SendBulkIntTransfer()

UsbCrypt_Read()

TX - Write from app RX - Read to app

MS USB Bus Driver

WMI Interface

Work Item thread,
constantly reads from

interrupt pipe
GetProgress()

Number bytes decrpted,
stored in device extenstion
(USB_CRYPT_EXT)

Figure 5

IAR Compiler & Tools
I used the 8051C compiler and workbench
with great success.  The compiler installed
easily and within a hour I had a compile
working image I could download to the
USB device.
IAR has been providing embedded tools
for over 20 years; a lot of experience which
shows in the depth of their tools.  In ad-
dition to compilers, IAR also offers
Bluetooth solutions, Visual State machine
tools, and much more.
For more information about IAR you can
contact their sales representative, Rob-
ert DeOlivera at (650) 287-4250

continued on page 7



Tech Newsletter Page 7

the FsContext field is a nice technique to keep track of the individual
pipes for each open handle.

You should use WMI to expose any type of device statistics, status,
and events to management applications. WMI can be a pain to
setup, but it is one of the necessary things to do (along with WHQL)
to provide your customers a top notch, quality driver.  In the sample
driver, WMI is used to provide the number of bytes decrypted.
The sample application reads this information using the WMI COM
interfaces.

User Application

The accompanying sample application sends data to the USB
device to be encrypted or decrypted. In this sample, only 20 bytes
are sent a one time. A real product should be able to handle an
arbitrary large number of bytes. The radio buttons select the
en(de)crypt function, if decrypting the number of bytes decrypted
by the USB device is also retrieved using the WMI COM interface.
The function ConnectToWMI() and GetDecryptBytes() handle the
WMI COM details. On start-up, the application opens a handle to
the USB device. Note that reading and writing data is done using
the standard Win32 API calls Read File() and WriteFile() calls (which
used by the MFC CFile class).

Pipe Handles
Most of the documentation regarding USB
programming, usually shows a nice layered approach;
you client driver sitting on top of  the MS provided bus
driver with pipe handles providing the logical connection
to your endpoint. So, while things are nicely layered in
the Windows OS, on the device side it’s different.
Usually USB devices are embedded systems, without
layers of  drivers - there’s no concept of  a pipe handle.
For example, the TI USB device simply generates an
interrupt whenever a packet is received on a specific
endpoint – that’s it. A pipe handle is really a Windows
abstraction of a USB device endpoint.

USB (continued)

Summary

This article describes USB and how to implement a Windows USB
device driver. Now you have enough information to start writing
a USB driver, or, at a minimum, be able to explain to your manager
what it will take. Just remember: 1) descriptors are just C language
structures used by the USB device to describe itself and its
capabilities, 2) the organization of interfaces and endpoints is up
to you, 3) pipe handles represent endpoints, and 4) WMI is a pain,
but necessary to provide a professional polished product.

References

USB Complete, Second Edition by Jan Axelson.
Lakeview Research.

Programming the MS Windows Driver Model,
Second Edition by Walter Oney. Microsoft Press.

Windows DDK documentation

www.usb.org

www.diving.phuket.com - Diving in Thailand

www.cia.gov/employment/clandestine.html.  For
information on how to apply for a spy position.
Interestingly, I don't recall James Bond - Agent 007
filling out an application online.

Screen shot of sample application



.NET Top 5 (continued)

private variables. You need both; the desired feature with the
necessary functionality.

While this is just a beginning, and some people will debate the merits
of the individual items, it does represent what I refer to as the top 5
features and functions.

1.  Threading

The .NET framework provides us with a full set of threading options
including an asynchronous call mechanism which isn’t truly a thread,
but does provide thread like functionality. The two main framework
classes that provide thread support are System.Threading.Thread
and System.Threading.ThreadPool. The difference between the two
is the amount of thread management your code will have to perform.
Using the Thread class your code is responsible for managing the

creation, running, and stopping of a thread; whereas, the ThreadPool
class does all of this work for you. A thread in the .NET framework is
ultimately implemented as an operating system thread within a
process and can be viewed using the PVIEW utility. Figure 1
contains C# code snippets on how a thread is created using the
Thread and ThreadPool class. What’s interesting when you compare
the two classes is that you’ll notice there is no “Start” method in the
ThreadPool class. This makes sense because the ThreadPool class
manages creating, starting, and stopping the threads.

Both classes use delegates for the actual implementation of the
thread itself. The code you wish to execute in the thread is contained
in the delegate. A delegate is a C# object that you can think of as a
type safe function pointer. In addition to methods used to manage
the thread, the Thread class contains properties such as apartment
type, culture (my personal favorite), and state (running, suspended,

etc). One subtle thread property is Thread.CurrentPrincipal that
enables you to define the security context for the thread. What
happens sometimes  is that your code runs great during
development, but fails on a customer system because the
customer is logged in with a different security context than what
you assumed. Therefore, you might have to set the security
context accordingly.

Which threading class should you use? It depends on the task.
A perfect place to use a thread pool is in server code when you
are servicing client requests. As each client request is received, it
is queued to the thread pool as a work item. Alternately, if you
need to control your threads, then you will want to use the Thread
class. For example, if you need to coordinate the flow of processing
between each thread as in a producer and consumer scenario.
You might have to pause the producer thread, enabling the
consumer thread catch up.

Threads need data to work on. For both Thread and ThreadPool
classes per thread data is encapsulated in a C# object that is then
passed as argument to the thread. The thread itself can allocate
memory as needed, and as expected, local variables are allocated
on the stack and are thread safe. Figure 2 shows how thread
data is passed to a Thread and ThreadPool class. A word of
caution when using threads: when a thread is used in a GUI to
perform some background task, you will have to marshall your
information back to the GUI. You can not make calls directly into
the GUI class (Windows form class) because the Windows forms
is by default single threaded. Only the thread that created the
window can operate on it directly.

The .NET framework provides support for asynchronous calls.
You can think of asynchronous calls as one shot threading,

Page 8 Tech Newsletter

continued on page 9

;

The call to queue a work item to the thread pool:
  ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadPoolFunc));

    // actual code that gets run in thread pool
    public static void ThreadPoolFunc(object state)
     {
       // Here is the actual thread, you would perform your

  // thread work here
     }

Code snippet to create threads directly:
   Thread OneThread = new Thread(new ThreadStart(ThreadFunc));

    // threads are initially started paused
   OneThread.Start();

    // actual thread code
     public static void ThreadFunc()
      {
      }

Figure 1
   public class MyThreadWorkerClass {

int Data;
byte [] MoreData[100];
void ThreadFunctionr() {
     // loop through data
     for(cnt = 0; cnt < 100; cnt++)
      {
          MoreData[nCnt] = 0x88;
      }
}

}

 MyThreadWorkerClass WorkThread = new  MyThreadWorkerClass;

  // fill in thread data
  WorkThread.Data = 12;
 Thread OneThread = new ThreadStart (
                                   MyThreadWorker.ThreadFunction);

  OneThread.Start();

Figure 2



meaning the call itself is executed in a separate thread provide by
the .NET framework. The cool thing about asynchronous calls is
that it’s built into the C# language itself. With asynchronous
programming, you create two logical items: a worker class and
callback. The worker class is the code which performs the actual
asynchronous work. The callback is what the worker calls when
the async is complete. The actual ascync calls are implement by
the C# compiler.

2.  Locking

The .NET framework contains two locking features: monitor and
mutex. The Monitor class is used for quick lightweight locking
within a process and the Mutex class is used for locking within or
across process boundaries.

One of the new features of .NET is built in support for locking;
every object created by the .NET framework has an associated
locking structure! The Monitor class uses this structure to provide
the actual lock for your critical section of code This makes
implementing and using locking very simple, you don’t have to worry
about creating and initializing a CRITICAL_SECTION, the locking
structures are automatically in place.

As I already mentioned, locking is built into the .NET framework
directly, the C# lock keyword automatically implements a monitor
lock. Figure 3 shows how the lock keyword is used.

Creating a locking structure for every object can be a waste of
resources since most objects do not require any locking. To solve
this problem, the .NET runtime keeps a cache of locking structures
that is uses as needed. For more information about this cache and
Monitors, I recommend you read Jeffery Richter’s article about
the Monitor class, MSDN Magazine, January 2003, “Safe Thread
Synchronization.”

Mutexs in .NET work the same as Win32.  Mutexs are implemented
by the Mutex class, can be either named or unnamed, can be
acquired recursively, are owned by a thread, and are signaled when
this ownership is released.  Mutexs can also be used across process
boundaries enabling you to share resources (like shared memory)
between two processes (even an unmanaged process).  For example,
if you have a service that is always running and you need to share
access to a common data structure in shared memory, then a named
mutex is the mechanism you should use.

3.  Memory Management

.NET application memory is managed by the runtime engine. Your
code does not have to worry about releasing memory, the runtime
tracks your objects lifetime and will free up memory as necessary.
When a .NET application is started, the runtime allocates a

Page 9Tech Newsletter

continued on page 10

contiguous region of memory, called the heap. When reference
types (your classes) are created, they are allocated from this
heap.  Allocations are done starting at the beginning of heap free
space and continue in a linear fashion. On startup, a pointer is
initialized to the beginning of the heap. When an allocation of N
bytes is required, this pointer is simply advanced by N bytes
thereby pointing to the remaining free heap memory. Allocating
memory this way is very fast, but at some point the runtime needs
to reclaim unused memory.

The runtime uses several techniques for releasing of unused
memory. This is typically referred to as garbage collection. The
runtime maintains a set of graphs representing the allocations along
with generation numbers. If an object is contained in the graph,
then it is referenced in some way and should not be released,
otherwise the object’s memory is released. Generations are
interesting, they are based on the observed fact that the most
recently allocated memory is usually short lived. The runtime
uses 3 generations, 0, 1, 2, to track the age of each allocation.
Generations are used as an optimization when the runtime
performs garbage collection. When the runtime starts garbage
collection, it will first examine memory allocations belonging to
generation 0, since these are most likely to be short lived. If not
enough memory is freed, the runtime continues checking
generations 1 and 2.

After all of the memory has been released, the remaining objects
are then compacted and shuffled on the heap in such a way as to
create a contiguous free area of heap for new allocations. This
means that some of the pointers to your objects will no longer
point a valid object! The runtime does “fixup” your pointers so
they point to the correct object after reshuffling the heap, but
how can the runtime do this while your code is executing? The

   public class MyThreadWorkerClass {

 // fill in thread data
 WorkThread.Data = 12;
 Thread OneThread = new ThreadStart (
                                   MyThreadWorker.ThreadFunction);
  OneThread.Start();
===================================
  public class MyThreadWorkerClass {

 Lock() {  code chunk, section to protect }
}

Very nice, since you don’t have to worry about freeing the
lock.

Figure 3

.NET Top 5 (continued)



Page 10 Tech Newsletter

.NET Top 5 (continued)

continued on page 11

answer, the runtime pauses all of your threads. Oh boy!!  Yes, garbage
collection is an expensive operation.

The runtime garbage collection is exposed to applications by the
System.GC class. This gives your application some control over
how and when garbage collection is performed. You can force
garbage collection to occur using the Collect(). This is handy when
you know that a lot of memory has been freed and is ready to be
collect. For example, if your application is manipulating large bitmaps,
you might want to force a collection after a bitmap is freed. The
KeepAlive() method tells the garbage collector not to free an object.

The runtime garbage collection only knows how to release managed
items. If your managed class is using an unmanaged resource, then
you have to explicitly free the resource. An example is if a class
opened a named pipe (an unmanaged resource), then this handle must
be closed by the class. To ensure resources are freed, you should
implement a Dispose() or add a Finalize() to your class. The
Dispose() method is from the IDisposable interface and intended
for consumers of your class to explicitly call. The Finalize() is called
by the garbage collector before releasing the objects memory giving
the object a chance to clean up. In C# a finalize method is
implemented using syntax similar to a destructor in C++.  The syntax
for C# is:

public MyClass {
public MyClass() {};
public ~MyClass{}
{
…clean up code here…
}

  }

A couple of addition points to understand about garbage collection;
garbage collection is performed at unknown time and Finalize() code
is run on an separate thread within the runtime.

4.  File Manipulation

Almost always you have to save your application data to some
type of persistent storage, this usually means writing your data to
a disk file. Well, things haven’t changed with .NET (some things
never do!). However some of the details are taken care of by the
framework and there’s a new option for storing data – Isolated
Storage. One of the goals of the .NET framework is to isolate the
application from any platform specifics, the file IO implementation
reflects this goal. The .NET framework implements two types of
storage models; streams and isolated storage. These models are
implemented by the classes System.IO.Stream and
System.IO.IsolatedStorage.Isolated-Storage

The Stream class is really an abstract class that cannot be used
directly, you must use a class derived from the Steam class.
Use of this abstract class results in a consistent interface across
all of the derived classes that implement file IO. The beauty of
this is your application can behave the same regardless of the
type of underlying storage type, file structure, or network
connection  – you just don’t care. For example, if you need to
export data from your application into different formats, you
can implement a class for each format type, such as coma
separated, DB, or table. This “format” class would derive from
the Stream class and handle all of the details of formatting
your data. How is this beautiful? Regardless of the format, the
application doesn’t change its behavior.

The FileStream class most closely follows the traditional file
IO system calls that we’re accustom to using: open(), close(),
read(), write(), and seek().  The methods Read(), Write(), Seek(),
and Close() are the FileStream equivalents (open() is handled in
the FileStream constructor).

An interesting IO class is MemoryStream.  Like all IO classes,
MemoryStream class provides the ability to read, write, and
seek, the different is the underlying storage is memory. This
class is perfect if you need to cache application data, you can
cache your data in the same format as it persists on disk. There’s
no need to create a special cache structure!!

Isolated Storage

For most of us, isolated storage is new way of thinking about
data storage. Traditionally, we think of storing application data
in files, files that have a specific location in a file system. By
convention, applications typically store data in common places
such as “C:\My Documents” or “H:\My Network Location”. This
approach works well with a PC centric model of the world, but
the Web has changed the world and this old PC model. People
are now connecting to their application using vastly different
methods, from web pages, wireless, cell phones, and PDAs.
Stitching together the program framework for this remote and
loosely connected world is one of the major goals of .NET.

Now that we have the context in which Isolated storage is used
for, just exactly what is Isolated storage? Isolated storage is
one of the pieces in .NET that solves a key problem with remote
users. How can you isolate your application data to avoid
corruption and provide security? How to uniquely identify your
data, and how do you support roaming users? Isolated storage
provides the mechanism to store and associate data with some
property of your program such as assembly, domain, web site,
or user. Isolated storage enables you to create files and
directories within the store without concern to the underlying
system. Another way to think about isolated storage is as your



Tech Newsletter Page 11

own private file system, uniquely identified by assembly, user,
web address, domain or other. The key point is these properties
are part of your code no matter where the code executed from.
This unique identification is one of the parts the runtime uses to
actually isolate your data. A word of caution: Isolated storage
should not be used to store confidential information.

Isolated storage is implemented by the
System.IO.IsolatedStorage.IsolatedStorage class.  Like the Stream
class, the IsolatedStorage class is an abstract class that cannot
be used directly. You will need to used on the derived classes, in
most cases IsolatedStorageFileStream class is adequate for the
task.   IsolatedStorageFileStream is derived from the Stream class;
like the FileStream class mentioned earlier, your code performs all
of the stream operations (read, write, seek). This is the beauty of
the Stream class, your code behaves the same.

5.  Network Communication

It’s a wired world and the .NET framework provides a very complete
set of classes that enable an application to easily perform any
network task. Networking is one of the .NET framework strengths.
All of the networking classes are contained in the System.Net and
System.Net.Sockets namespaces. The System.Net namespace
contains classes for using popular network protocols such as
HTTP and FTP  In addition to protocol support, there are classes
to handle network certificates, security, connection management,
and proxies.

Protocol classes are derived from the abstract classes WebRequest
and WebResponse and are referred to as “pluggable protocols”.
What pluggable means is, each protocol is registered with the
framework and identified by the Uniform Resource Identifier (URI)
used in a request. URI’s essentially define a way to locate
resources on the internet, for example: http://www.goldenbits.com
is a URI for the Golden Bits web page. Another example of a URI is
ftp://ftp.microsoft.com, the URI for the Microsoft FTP server.
When a request is made using WebRequest.Create(), the URI
used in the call determines which protocol is returned.

You can also add your own protocol to the runtime by using the
RegisterPrefix(). The HttpWebRequest and HttpWebResponse
are used to send and receive http messages to a server.  All of the
details of the HTTP protocol are handled by these classes, making
adding web access a breeze.

The class System.Net.Sockets implements the socket library,
Winsock, which the majority of applications use. The semantics
of the Sockets class follows the socket model (originally BSD
sockets); server listening for connections while clients connect.

The TcpClient and TcpListener classes implement this model.
The TcpListener class will return a TcpClient when a connection
is accepted, the TcpClient.GetStream()  method is then used to
get a NetworkStream class for the connection. The
NetworkStream class is what is used to perform the actual
transfer of data across the connection. What is interesting is
that NetworkStream class is derived from the System.IO.Stream
class, the same class used for file IO!!. Very cool. This means
your application doesn’t have to implement a different set of
classes or techniques to handle network traffic. Also,
asynchronous IO is handled the same way for files and network
connections. Therefore, the .NET framework provides a
uniformed model for IO, which is one of the .NET design goals.
Figure 4 shows how server code would look.

The UdpClient class implements UDP protocol. This class is
used to send and receive UDP packets and broadcast messages.
You can also manage multicast groups with this class.

Summary

So there you have it -- The .NET Top 5, David Letterman
would be proud. You can download sample .NET code from
www.goldenbits.com/newsletter/issue2/nettop5.zip.

!

.NET Top 5 (continued)

http://www.goldenbits.com/newsletter/issue2/nettop5.zip


Page 12 Tech Newsletter

SCSI Port driver for Fibre Channel. Designed the operating system layer for a SCSI storage driver (XP, Win2K, NT, Linux)
for a fibre channel HBA (host bus adapter – PCI/SBUS card).

Embedded Network Appliance. Developed an embedded monitoring device for web sites and/or other data center systems.
The device uses uC/OS real time kernel running on Motorola ColdFire processor (MCF5206e).

WDM, NDIS Device Drivers . Developed  a WDM and NDIS device driver for a prototype wireless system.

Parallel Search Engine. Developed a search engine that distributes database query to other systems; the search runs in
parallel on the supporting systems and the results are written (through bulk inserts) back into the database.

Satellite Set Top Box.  Developed a script language and compiler used to code the television UI (guide menus, channel select).

Camera Control.   Wrote highly customized Windows user interface with special graphics and custom controls. The application
presents the user with camera images with graphic information overlaid (in near real time), camera configuration information,
and product inspection information.

Embedded TCP/IP Protocol Stack.  Wrote a NT packet driver using NDIS driver subsystem to simulate a mobile network for
a military application. The embedded stack executed under NT, and the packet driver simulated network device IO.

Project Experience - Several projects Golden Bits has successfuly completed.

.NET Top 5 (continued)

          byte []ReadBuff = new byte[100];
            // listen on port 13500, noting special about
            // this port number, just random
            TcpListener Listen = new TcpListener(13500);

            // start listening
            Listen.Start();

            // listen for connections
            TcpClient ConClient = Listen.AcceptTcpClient();

            // got connection at this point

            // get network stream
            NetworkStream ConStrm = ConClient.GetStream();

            // read some bytes off stream
           (ConStrm.Read(ReadBuff, 0, 100);

            // all done, close
            Listen.Stop();
            ConStrm.Close();
            ConClient.Close();

Figure 4

Notes -



Tech Newsletter Page 13

What is 2+2?
An accountant will say “What do you want the answer to be?”A mathematician will say “I believe it is 4, but I will have to prove it.”A
statistician will say “The population is too small to give an accurate answer, but on the basis of the data supplied the answer lies
between 3 and 5.” An economist will say “Based on today’s thinking, the answer is 4 but the answer may be different tomorrow”. An
engineer will say “The answer is 4, but adding a safety factor we will call it 5”.

The Car
There were three engineers in a car; an electrical engineer, a chemical engineer, and a Microsoft engineer.Suddenly, the car stops
running and they pull off to the side of the road wondering what could be wrong.The electrical engineer suggests stripping down the
electronics of the car and trying to trace where a fault may have occurred.The chemical engineer, not knowing much about cars,
suggests maybe the fuel is becoming emulsified and getting blocked somewhere.The Microsoft engineer, not knowing much about
anything, came up with a suggestion. “Why don’t we close all the windows, get out, get back in, and open all the windows and see if it
works?”

Screen shot of GUI demonstrating .NET Top 5


