
Volume 1 Issue 3 ISSN 1549-2494

Golden Bits Software, Inc.
3525 Del Mar Heights Rd, Suite 158
San Diego, CA 92130
858.259.3870 phone
858.259.7655 fax

This article presents a primer on how to develop a
USB device driver for the Linux kernel, version
2.6.8. It includes a description of how USB is
implemented in the Linux kernel, some of the key
design aspects, and a sample USB driver.

The sample USB device presented is an encryptor/
decyprtor device where the actual en(de)cryptor
engine runs on the USB device itself. You can
download the sample code from

Introduction:

USB has become a very popular technology used to
connect all sorts of devices to host systems. Almost
every computer system sold today, from low cost
PCs to high-end server systems, comes with USB
built into the system. What does this mean from a
software viewpoint? If you’re a software developer,
it means you’ll have to understand how to write a
device driver for your whiz bang USB device.

Volume 1, Issue 3, Fall 2005

Tech Newsletter
Golden Bits® Software, Inc.

Linux USB Driver
Download sample code: www.goldenbits.com/newsletter/issue3/linuxusb_sample.zip

In this issue:
• KDB Debugging
 Featured in the
 Nov issue of
 Dr. Dobbs!!

• Linux USB driver

(Both with sample code)

Golden Bits® is a software engineering
firm providing consulting services in a
wide range of diverse technologies:
• Windows, Linux
• Device Drivers, Embedded Systems
• Database, TCP/IP, GUIs

See page 12 for past projects
www.goldenbits.com.

continued on page 2

Technologies
• Fibre channel
• Device drivers
• COM/DCOM
• Database, SQL
• C/C++
• SCSI
• GUIs/MFC/.NET
• Windows
• Linux

Copyright© 2002-
2005
Golden Bits Software, Inc.

continued on page 8

KDB - Linux Kernel Debugging
How to use KDB in your next driver
Download sample code: www.goldenbits.com/newsletter/issue3/kdb_sample.zip

different Linux distributions, with different system
loads, and under a range of error conditions such as
a hardware failure or out of memory cases. No
matter how the hardware fails or if the OS is out of
resources, your driver should never cause a panic.
The bottom line is: test test test and debug debug
debug. It is not glamorous, but this is how solid
products are created.

Unfortunately there isn’t a lot of kernel level
debugging support in Linux. The only available stock
tool (one that is always available) is the good old
debug printk() function. Remember debugging your
first program, “Hello World”, with printf()? Ugh!!!
Print statements alone are completely inadequate when
debugging any kernel code of moderate complexity.
Fortunately for kernel developers, there is the
Kernel Debugger or KDB. KDB is not part of the
official kernel release from kernel.org, but it has
been around for a while and has become the de facto
kernel debugger of choice.

This article was featured in the Nov 2005 issue
of Dr. Dobbs.

Introduction

Developing Linux kernel level software can be a
difficult task. You code has to work well within the

kernel (can’t hog resources
or hold spin locks for long
periods of time), be multi-
threaded, and must run
smoothly on several Linux
distributions.

Depending on the product
and driver, approximately
40-50% of your
development time will be
spent testing your driver on

www.goldenbits.com/newsletter/issue3/linuxusb_sample.zip
www.goldenbits.com/newsletter/issue3/kdb_sample.zip
http://www.goldenbits.com/

Page 2 Tech Newsletter

This article explains how to debug your driver with KDB, add hooks
into KDB from your driver, and create a KDB module. It also includes
several KDB tips and a sample driver (with source code) you can
download from www.goldenbits.com/newsletter/issue3/
kdb_sample.zip.

KDB Overview

KDB is an assembly level debugger; yes, you should be familiar with
assembly to write and debug kernel code. It’s very handy if you can
decode a stack trace and the assembly instructions that worked on
the stack. There is also a good source-level kernel debugger called
kgdb that supports the 2.4 and 2.6 kernels (see http://sourceforge.net/
projects/kgdb) and is worth investigating. If possible you might want
to setup two development systems or two different bootable kernels,
one with using KDB and the other with kgdb.

KDB provides a command line interface from which you can run
various debug commands to dump memory, view registers, look at
stack traces, and more. Typing the “help”command or "?" at the kdb
prompt will display all of the commands. The nice thing about kdb is
that it's “lightweight”, meaning it does not interfere or change the
normal flow and timing of the kernel code during runtime. Unlike a
source-level debugger, you do not have to compile your driver with
debug information. Sometimes this extra debug information does
change the timing of your driver, and this subtle difference can mask
a bug.

KDB is invoked when a breakpoint is hit, system panic, or by the
break key. The main entry point for KDB is kdb() in kdb/kdbmain.c;
when invoked, kdb disables interrupts for the local processor, and
will stops the other processors and disables their interrupts. The
key point is that all interrupts are disabled (with the exception of
non-maskable interrupts) when KDB is invoked. If your hardware
generates an interrupt request while you are in KDB, the request is
ignored until you leave KDB.

Setup, getting what you need
You’ll often hear that KDB is the Linux Kernel’s “built-in” debugger.
Now the words “built-in” in this case doesn’t always mean what you

would usually think. In fact, when you download the kernel
source from www.kernel.org, look hard. You won’t find any
KDB source, so you'll have to apply a KDB patch your kernel.

Kernel patches for KDB are available from ftp://oss.sgi.com/
projects/kdb/download, the latest being version 4.4; but
beware of these patches, since they are usually written for a
generic kernel from kernel.org and not for a specific
distribution. As a result, sometimes these patches do not work
for a specific distribution such as Red Hat, Mandrake, and it’s
usually the distribution you need to test against!! You might
have to tweak the patch itself or hopefully the distribution
contains a version of KDB that compiles and runs. For this
article, I used the Mandrake 10.0 distribution which does come
with KDB already bundled with the kernel source.

After the KDB patch has been applied, you need to turn on
debugging via the kernel configuration menu and rebuild the
kernel. The configuration menu selection is under “Kernel
Hacking / Built-in Kernel Debugger support”. Two other menu
selections of note are “KDB Modules” and “KDB off by default”.
KDB modules enable you to extend the functionality of KDB
itself, a very powerful feature and something I’ll talk about
later in detail. “KDB off by default” controls whether KDB is
enabled at boot time or manually enabled by the user at a later
time (off by default). If KDB is disabled, and the kernel panics,
KDB will not be invoked. To enable KDB after boot use the
command “echo “1” > /proc/sys/kernel/kdb” to enable, to
disable use “echo “0” > /proc/sys/kernel/kdb”.

You can run KDB from the console or via a serial cable. Using
a serial connection is preferable because if the kernel panics

KDB (continued)

continued on page 3

Tech Newsletter published by Golden Bits Software, Inc. Copyright© 2002-2005. All rights reserved.

Disclaimer: All material is presented "as is" without warranty of any kind, either expressed or implied, including,
without limitation, the implied warranties of merchantability or fitness for a particular purpose. Golden Bits shall not be
liable for any damages whatsoever related to the use of any information presented in these materials. The sample code
provided is just that, a sample and is not intended for any commercial use. The information presented is as accurate as
possible, however mistakes can and do happen. Please inform Golden Bits by email with any errors. Golden Bits shall
not be responsible for any damages owing to editorial errors.

A mathematician, a physicist, and an engineer were
all given a red rubber ball and told to find the volume.
The mathematician carefully measured the diameter
and evaluated a triple integral.
The physicist filled a beaker with water, put the ball in
the water, and measured the total displacement.
The engineer looked up the model and serial
numbers in his red-rubber-ball table.

http://www.goldenbits.com/newsletter/issue3/kdb_sample.zip
http://www.goldenbits.com/newsletter/issue3/kdb_sample.zip

Page 3Tech Newsletter

while the console is running X-Windows (rendering your keyboard
useless) you can still use KDB via the serial cable. Note also that
terminal programs, such as Minicom, provide a history of commands
and KDB output to which you can refer while debugging. To set up
a serial connection you will need to configure the kernel to boot
using the serial port as a console and a NULL modem cable; the
details are well documented in linux/Documentation/serial-
console.txt. Even if you are not using KDB, it's very handy to have
a serial console to save any kernel messages while debugging. For
example, if an overnight test is running and in the morning the system
is hung, hopefully there will be some useful debug information on
the serial console.

You can also configure KDB to your personal preferences by using
the “kdb_cmds” text file. This file can contain environment variables
such as number of lines to display and KDB commands such as
breakpoints. However since this file is it is compiled into KDB
itself, you must recompile KDB whenever you make any changes.

Common Commands

When you drop into KDB, the KDB prompt displays on the console
terminal (or minicom if connected via serial line). From the KDB
command prompt, you can start entering debugging commands, type

the “?” for a help listing of commands. See Figure 1 for a
sample output of the KDB help command. Some useful
debugging commands are:

id – Disassembles instructions at a specific address.
You can use the instruction pointer address to
find the name of a function.

Here’s where you need to understand some assembly code.
When the kernel panics, the instruction pointer (IP) at the
time of the panic is saved; from this IP, you can use the
id command to disassemble the code. See Figure 2 for
sample output from the id command. From this assembly,
you can then figure out where in the source code the
panic occurred. To help determine the exact location
of the panic, you can compile your source code into just
the assembly part by using the "-S" option with gcc. The
result is assembly intermixed with source code line
numbers.

ss – Single steps an instruction.

bp – Sets a breakpoint.

KDB (continued)

continued on page 4

Entering kdb (current=0xc0355f80, pid 0) on processor 0 due to Keyboard Entry
[0]kdb> ?
Command Usage Description
—————————————————————————————
md <vaddr> Display Memory Contents, also mdWcN, e.g. md8c1
mdr <vaddr> <bytes> Display Raw Memory

<— snip more commands than shown here —>

be <bpnum> Enable Breakpoint
bd <bpnum> Disable Breakpoint
ss Single Step
ssb Single step to branch/call
pt_regs address Format struct pt_regs

tkdata_drv [num lines] Dumps tank datum array (from drv)
tkthrd_drv Display tank thread state (from drv)
tankdata [num lines] Dumps tank datum array
tankthrd Display tank thread state
[0]kdb>

KDB output showing all of the available comands. Notice the last four commands, these are the KDB commands that
our sample driver hooks into KDB. You can run these custom commands directly from the KDB debugger.

Figure 1 - Help Command

Tech NewsletterPage 4

mm – Looks at memory. You can also modify memory
contents.

dmesg – Prints out messages in the kernel message
buffer. This enables you to view the most recent system
messages before KDB was invoked.

This highlights just a few of the KDB commands. Refer to the
KDB documentation for more information regarding all of the
KDB commands.

In addition to the standard KDB commands, you can extend KDB
and add your own commands!!

KDB Modules, Extending KDB,
Custom KDB Commands

A powerful feature of KDB is the ability to extend KDB’s functionality
by adding your own debugging module, referred to as a KDB module.
This enables you to add debugging commands, specific to your
driver, directly into KDB itself. A KDB module is a kernel module,
similar to a device driver; that registers itself with KDB when it is
loaded. Like a driver, a KDB module contains module_init()
and module_exit() functions and is loaded into the kernel using
the insmod command.

When the module is loaded, the function, kdb_register(), is called
for each command you wish to register with KDB. In the sample
KDB module that accompanies this article, the function,
tank_kdbm_init(), in the source file tank_kdbm.c contains the
code used to register a debug command with KDB. The prototype
of the kdb_register() function is:

kdb_register(char *cmd, kdb_func_t func,
 char *usage,char *help,
 short minlen);

Where:

cmd – Pointer to command string, this the actual command
 used at the KDB prompt.

func – Pointer to the function KDB will call when this
 command is entered.
usage – How this command issued, any arguments for this

 command.
help – Help text.
minlen - Minimum length of command, enables uses to
 abbreviate command.

Note the func argument. This is a pointer to a function that
will be called when the command, pointed to by the *cmd
argument, is executed from the KDB prompt. This function is
where you actually implement (via code) your debugging
command. If you look at the KDB source file, kdbmain.c, you
will notice that all of the debugging commands are registered
with the function kdb_register(). Also, there is a
kdb_unregister() function that must be called when your module
or driver unloads. If you don’t unregister your debug command,
KDB has no knowledge that the command and function for that
command is no longer loaded. When the command is executed
from the KDB prompt, the old function pointer is called (which
by now points to some random memory) and BOOM!! Panic.

So how do you create your own KDB module? The registration
of the KDB command is straightforward -- simply call the
kdb_register() -- but what about the function KDB calls?
Whenever you add a KDB command, you will also have to
supply a corresponding function for this command.

The function prototype is:

static int
debug_func(int argc, const char **argv,
 const char **envp,

 struct pt_regs *regs)

Where:

argc - Number of argments passed to debug
 command.
**argv - Pointer to array of arguments. Identical to
 how arguments are passed to a main()

 function.
**envp - Pointer to array of environment variables.
*regs - Pointer to registers, can be NULL.

This debug function will be called by KDB directly and will be
executed while KDB has control of the system. As such, when
writing your debug function, keep in mind the execution context
of your debug function: a) system is halted, b) interrupts are
disabled, c) the kernel has possibly panic, d) memory might be
corrupted, and e) who knows what else.

Because of this context, you will probably be limited in the
amount and type of things you can do within your debug function.
You can call other kernel functions and subsystems (such as
the network stack), but since the kernel is probably in an unstable
state (which is why you are in the debugger), these calls may

KDB (continued)

continued on page 5

Tech Newsletter Page 5

not be successful and will further destabilize the kernel. It is best to
keep your debug function simple; limit the work to the specific debug
command. Usually you will want to dump some data structures or
set/reset some values within your driver. After these warnings and
suggestions, remember, it is your code and project so if you need to
perform any complex debugging work (like sending debug output
over a network connection) then go for it!!

KDB provides a set of functions you should use whenever possible,
which are exported from kdbmain.c. Some of the commonly used
KDB functions are:

• kdb_printf()
• kdb_getarea_size()
• kdb_putarea_size()
• kdbgetenv()
For more details check the kdb code itself.

Often it is necessary to pass arguments with your debug command,
such as the number of lines to display. In the sample KDB module, the
number of lines to display is passed as an argument for both debug
commands, tankdata and tankthrd. Arguments are passed using the
argc and **argv parameters, just like a main() function. The number
of arguments is contained in argc, and a pointer for each argument
is contained in the char array pointed to by **argv.

In the previous paragraphs, I discussed how to create a stand
alone KDB module you can load (via insmod) to debug you
driver. You can also register KDB commands, using the
kdb_register() function, directly from your driver; a separate
module isn’t necessary. The kernel build define,
CONFIG_KDB, enables you to conditionally define your KDB
functions (using kdb_register(), kdb_unregister(), etc.).

In the sample code, the driver contains two KDB debug
functions, kdb_TankDataArray and kdb_TankThrdState.
Both of these functions are exported from the driver and are
called directly by the functions dump_tankdata() and
tank_threadstate() in the sample KDB module,
tank_kdbm.ko. This illustrates how you can hook into KDB
from a module or directly from from your driver. The debug
functions themselves, kdb_TankDataArray and
kdb_TankThrdState (both located in the driver), dump the
tank data array and thread state.

Debugging Tips and Tricks with KDB

Here are some ways you can use KDB for debugging.

KDB (continued)

continued on page 6

Sample output of the KDB id command (x86 instruction set)

[0]kdb> id kdb_TankDataArray [You can use a symbolic name or an address.]
0xdc1eab02: jno 0xdc1eab79
0xdc1eab04: gs
0xdc1eab05: jae 0xdc1eab7b
0xdc1eab07: push %ebx
0xdc1eab08: insb (%dx),%es:(%edi)
0xdc1eab09: popa
0xdc1eab0a: jbe 0xdc1eab71
0xdc1eab0c: sub %dl,0x53(%ecx)
0xdc1eab0f: je 0xdc1eab83
0xdc1eab11: imul $0x7453512c,0x67(%esi),%ebp
0xdc1eab18: jb 0xdc1eab83
0xdc1eab1a: outsb %ds:(%esi),(%dx)
0xdc1eab1b: addr16 sub $0x51,%al
0xdc1eab1e: push %ebx
0xdc1eab1f: je 0xdc1eab93
0xdc1eab21: imul $0x29,0x67(%esi),%ebp
[0]kdb>

Figure 2 - Sample Output

Tech NewsletterPage 6

Global Debug Variable. Since KDB is an assembly debugger,
it is difficult to figure out what’s on the stack or in memory.
However if you create a global variable in your driver, then you
can refer to this global by its symbolic name when using the
KDM display memory command (mm).

 For example, declare the following in your driver:

ulong g_currentstate;

Update this variable in your driver as necessary (per your logic
flow). When KDB is invoked, you can easily display or modify
the contents using the command, mm g_currentstate.

Circular Buffer. Create a circular buffer containing debug
statements and save the pointer to the buffer in a global variable
along with the current index (last entry made in buffer). When
the kernel panics or another error condition occurs you can use
KDB to dump the contents of the buffer by using the global pointer.
This will give you a snapshot of activity and any recent errors
that your driver has logged. This is really an old technique, but
one that is very helpful and is usually implemented in most driver
or embedded projects.

Table, Key Data Structs. If your driver uses any tables or key
data structures, such as a structure containing device
information, then you can create a KDB command to display
the contents of the tables or any data structure in a nice readable
format. This is where a custom KDB command is ideal, since
you can extend KDB to display or modify driver specific
information.

Invoking KDB Directly. How often have you seen the
comment, “This cannot happen” in a source file? Nope, no way
the code should be executing here. Right? I’m guilty of writing
this comment and have been proven wrong when Yes the code
does actually execute these particular lines of code. In situations
like this, you can invoke KDB directly from your driver by simply
using the macro, KDB_ENTER() (defined in include/asm/
kdb.h). This will freeze the execution of your driver and enable
you to debug your code and hopefully answer the question: Why
is the code executing in the wrong place?

The sample driver contains an example of invoking KDB directly
by using the sample user application. The user application uses
the IOCTL_FORCE_KDB ioctl() call. Invoking KDB directly
is great when your code detects a corrupted link list, invalid
state, or an unknown input. You can freeze the driver state when
the error occurred. This is especially helpful if you are running

an overnight test and this error condition occurs during the night.
In the morning, you can examine the state of your driver.

Modify Kernel Panic. Since you have access to the kernel source,
you can directly modify the kernel panic function to display
debug information specific to your driver. To do this, create a
function pointer as a global variable within the kernel itself. When
your driver loads, set this pointer to a function within your driver,
when the system panics, check if the function pointer is NULL.
If not, then call the function (which is in your driver) using the
function pointer directly from the panic code. When your driver
unloads, set the global function pointer to NULL. Unless you
are building your driver directly into the kernel, you need to
create a global variable since your exported debug function is
not known to the kernel at boot time. The kernel panic function
is called panic() and is in the kernel source file, kernel/panic.c.
This is very handy when the system panics, since you can display
debug information for your driver. While this technique is not
KDB specific, it is good to know.

KDB – Sample Driver

The sample driver included with this article is a char driver that
monitors the air pressure of a scuba tank during testing. Because
of the high pressure used, scuba tanks have to be hydrostatically
tested every five years. This test consists of filling the tank with
water, submerging the filled tank within a larger test tank also
filled with water, and then pressurizing the water within the tank.
As the water within the scuba tank is pressurized, the tank itself
expands; the amount of tank expansion is measured and must fall
within a specific range. This procedure tests the strength of the
tank itself. An interesting web page that describes this procedure
in more detail can be found at: http://www.deep-six.com/
page37.htm.

The sample driver monitors the pressure within the tank and the
amount of expansion the tank experiences during the testing
cycle. A real-world monitoring system would use some type of
external hardware (like a PCI card or USB device) connected to
the specialized test system to provide the real numbers; for our
purposes the sample driver will generate sample data internally.

There are two data types: tank pressure and tank expansion. The
sample driver maintains a circular queue of tank pressure and
expansion using an array of structures of tank_test_data_t
(defined in tank_ioctl.h). When the driver loads, the function
InitMonitor() initializes this queue; the pointer to the queue
buffer is saved in the driver structure tank_mon_device_t. A

KDB (continued)

continued on page 7

Tech Newsletter Page 7

kernel thread, TestDataThread, is used to simulate a real device
that would measure tank pressure and expansion. The sample
application, tankapp, uses a set of ioctl commands to start, stop,
and reset the thread. The sample application is also used to read
the actual tank data and invoke KDB directly.

KDB Debug

Given this sample driver, how can we use KDB to help debug?
The sample code presents two KDB commands, one displays the
thread state and the other dumps the contents of the circular
buffer. In our sample, the circular queue contains tank pressure
and stretch, but queues are very common structures used by device
drivers. Disk IO, events, network packets, cell packets, and
pending actions are examples of things that get queued by
different drivers. In addition to KDB commands the driver will
invoke KDB directly when the user application calls the
IOCTL_FORCE_KDB ioctl command(by running the command
"tankapp –k").

The KDB module source code is located in tank_kdbm.c and
registers the KDB commands tankdata and tankthrd when
loaded. The sample driver registers the KDBM commands,
tkdata_drv and tkthrd_drv, when it loads. The KDB module
and driver both ultimately call the driver functions
kdb_TankDataArray and kdb_TankThrdState functions
implemented in the driver. The KDB ‘help’ command displays

KDB (continued)

the commands registered by the driver and standalone KDB
module.

To run the debug commands from the KDB prompt, simply enter
the following commands:

tkdata_drv 10 - Displays 10 lines of tank test data.
tankthrd - Displays thread state.

Figure 3 shows sample output from our KDB commands.

Summary

KDB is a powerful tool and you should use it whenever you are
developing a driver of any complexity. After reading this article
and studying the sample driver, you should be able to incorporate
KDB into your next driver.

References and resources:

http://linuxdevices.com/articles/AT3761062961.html
Good article on KDB commands.

http://oss.sgi.com/projects/kdb/
KDB patches, open source project.

http://www-128.ibm.com/developerworks/linux/library/l-kdbug/

Sample output of our custom KDB commands.

[0]kdb> tkdata_drv 10

Dumping tank monitor data (numlines: 10)
Index Pressure Stretch
0000 38 19
0001 40 20
0002 42 21
0003 44 22
0004 46 23
0005 48 24
0006 50 25
0007 52 26
0008 54 27
0009 56 28

[0]kdb> tankthrd
Tank Monitor thread is: STOPPED
 DatumCount: 48
 CurrentIndex: 48

Figure 3 - Custom Commands

Linux USB (continued)

www.goldenbits.com/newsletter/issue3/linuxusb_sample.zip

It is very helpful to have an understanding of USB technology itself
when developing a USB driver. For more information about USB,
you can read my previous newsletter (www.goldenbits.com/
newsletter/issue2/gbtechnews_issue2.pdf), which goes into more
detail about USB itself. Also, there is a lot of good information about
USB technology in references such as: www.usb.org, USB
Complete, Second Edition by Jan Axelson, www.intel.com/
technology/usb, and sourceforge.net/projects/linux-usb.

Linux USB

The USB driver code is organized into the separate directories
under drivers/usb: class, core, gadget, host, image, input, media,
misc, net, serial, and storage. The core and host directories contain
the key kernel source for managing the different types of USB
drivers. These two directories along with the usb-skeleton.c

Page 8 Tech Newsletter

continued on page 9

;

sample driver are a great place to start learning about the details
of writing a Linux USB driver.

Core USB support in Linux is provide by the kernel drivers:

usbcore - Core USB routines to send/receive urb packets,
interfaces with individual USB devices.

ehci-hcd - The Enhanced Host Controller Interface (EHCI)
is standard for USB 2.0 “high speed” (480 Mbit/sec, 60 Mbyte/
sec) host controller hardware.

ohci-hcd - The Open Host Controller Interface (OHCI) is a
standard for accessing USB 1.1 host controller hardware.

uhci-hcd - The Universal Host Controller Interface is a standard
by Intel for accessing the USB hardware in the PC (which is
also called the USB host controller).

Figure 4 - USB Stack

USB Hardware
Root HUB

ehci-hcd, ohci-hcd,
uhci-hcd (depends on USB

root device)

usbcore.

Your USB Driver Network SubsystemFile Ops interface
(part of your dirver)

Your application

User Space

Kernel Space

www.goldenbits.com/newsletter/issue3/linuxusb_sample.zip
www.goldenbits.com/newsletter/issue2/gbtechnews_issue2.pdf
www.goldenbits.com/newsletter/issue2/gbtechnews_issue2.pdf

These core drivers handle the USB details, but how does a USB
device present itself in a useful manner to the user? The device
driver for a particular USB device is responsible for attaching/
registering itself to the appropriate kernel subsystem. For
example, if your USB device is a network device, then the driver
must register itself with the network subsystem using
register_netdev(). It’s your driver’s responsibility to translate
network requests into the correct USB requests. For some device
types (classes), there is additional support, in terms of code, that
your driver should use. For example, storage devices will need
to use the usb-storage driver.

Figure 4 illustrates the organization of USB drivers within the
kernel.

 USB Descriptors

Arguably one of the most confusing aspects of developing a USB
driver is understanding the USB descriptors and how they are used.
The key descriptors are device, configuration, interface, and
endpoint. A descriptor is nothing more than a data structure. When
the designers of the USB standard tried to figure out a flexible
and extensible way of configuring a USB device, they defined a
set of data structures (the descriptors) that a USB device would
present to describe itself and its capabilities. All of the USB
descriptors are defined in include/linux/usb_ch9.h.

Page 9Tech Newsletter

continued on page 10

A USB device has one device descriptor that describes the device
as a whole. This descriptor contains the vendor and product ID
and the number of configurations. Each configuration is described
by a configuration descriptor. The USB standard allows for multiple
configurations, but in practice, only one is almost always used.
Each configuration contains a set of interface descriptors where
each interface defines a set of endpoints. It is these endpoints
that your driver communicates with. Your driver code ultimately
uses a pipe handle to send/receive data with a USB device, the
pipe handle actually represents an endpoint. Figure 5 (below)
shows the logical organization of a USB interface and endpoints.

Device Driver Structure

Like all kernel drivers, a USB driver needs to call a set of
functions to “register” itself with the correct kernel system.
When a USB driver loads, in its driver init function it should
call usb_register() with a pointer to a USB device structure -
struct usb_driver , defined in include/linux/usb.h. This call
essentially registers the driver with the usbcore module. The
usbcore module will subsequently call two key functions, probe()
and disconnect(), exported by the usb_driver struct when the
USB device is connected or disconnected. In the sample driver,
the probe function is called usb_crypt_probe().

The interesting stuff occurs when the probe() function is called,
since here is where the driver will setup the necessary structures
to send/receive data with your whiz-bang USB device. This is
also the place where your driver should connect to the necessary
kernel subsystem (network, storage, etc.). For example, if your
USB device is a wireless network card, then you’ll need to call
register_netdev(). probe() is called with a pointer to a struct
usb_interface and struct usb_device_id. From this, you can
start building your private driver structures and setting up your
interface endpoints. Note that probe() is called once for each
interface your USB device has defined. If you create any global
data structures in the probe() function, you need to check if
these globals have been previously created, otherwise your code
will accidentally create a second global structure. In the sample
driver, a global structure called usb_crypt_devinfo is created only
once; you will see a check to avoid a second instance of
usb_crypt_devinfo from being created.

Once your driver has initialized the necessary data structures,
it should call usb_set_intfdata(), which associates your private
data (usb_crypt_devinfo in the sample driver) with this interface.
You can later retrieve this data from the interface structure using
the function, usb_set_intfdata(). This is very handy because it
enables you to store a pointer to your private data with the USB
interface structure.

Linux USB (continued)

Configuration

Interface 1

Interface 2

Endpoints

Figure 5 - Endpoints

Page 10 Tech Newsletter

Linux USB (continued)

continued on page 11

The probe() function is also the place you should register the
driver with the other kernel subsystems, such as the network,
storage, and character subsystems. If you want to be able to
communicate directly with your USB driver from a user
application, you’ll need to register with the character device
system; the function usb_register_dev() does this. The second
argument to usb_register_dev(), struct usb_class_driver,
contains the name of the /dev device entry to create, the device
minor base number, permissions, and a pointer to the driver's file
struct file_operations table. This call will create the /dev entries
and return the device minor number in the interface structure.

usb_register_dev() should be called for each interface; if you
have multiple interfaces then this function is called for each
interface. For each USB interface, a separate character device is
created in /dev. This makes sense because your USB device should
be designed such that each interface implements different
functionality. For example, in the sample USB device, there are
two interfaces, one for encryption and a second for decryption.
The sample driver registers these two interfaces using
usb_register_dev(), which in turn creates two /dev entries, /dev/
usb/crypt0 (for encryption) and /dev/usb/crypt1 (decryption).
Depending on what the application needs, it can simply open the
correct /dev entry.

When your driver exits the probe() function, it should be ready
to send and receive data. The structure used to transmit data is
the struct urb (defined in include/linux/usb.h).

Some Data Structures, Endpoints, and Pipes

One thing about USB drivers, there’s no lack of structures. If you’re
going to write a USB driver, you need to familiarize yourself with
the various structures used to send, receive, and configure. All of
the USB related structures are contained in two header files,
include/linux/usb.h, and include/linux/usb_ch9.h. Some of the key
data structures are:

usb_device. Allocated and used to define your particular USB
device, includes your vendor and product ID.

usb_host_config – Contains usb device configuration and
interfaces.

usb_interface – Contains endpoints which are used to send/
receive data.

usb_host_endpoint – Contains information for one endpont.

urb – Actual struct used to generate a USB request (read,
write, or control). Functions used to allocate and initialize

include: usb_init_urb() to initialize, then depending on
the type of USB request you can use usb_fill_int_urb()
to fill an interrupt URB, usb_fill_bulk_urb() to fill a
bulk URB, usb_fill_control_urb() to fill a control URB.

USB devices send and receive data through a set of endpoints.
An endpoint is a logical address that the USB device defines in
the set of descriptors it sends to the USB host controller.
Endpoints are unidirectional, meaning two separate endpoints
are used to send and receive data. The direction of the endpoint
is relative to the USB device, not the host. For example, an
OUT endpoint means data is sent OUT from the USB device to
the host. Endpoints are grouped into an interface, which is
intended to represent logical functionality. I know this
statement is a bit fuzzy, but the design goal is to organize your

USB device functionality into individual interfaces, where each
interface contains the necessary number of endpoints to
accomplish the task. For example, if you are designing an
interface for an MP3 player, then one interface may be used
to transfer the MP3 bit streams and second interface to
transfer song titles or licensing information.

In the Linux USB driver environment, endpoints are represented
by pipes; a pipe is an unsigned int which contains various
bitfields that define the endpoint and its characteristics (see usb.h
for details). Your USB driver communicates to an endpoint
using the appropriate pipe. You can think of a pipe as a handle
of sorts which represents a specific endpoint. A set of macros
used to manage pipes are defined in usb.h. Each macro starts
with usb_pipe* along with a set of macros to create a specific
type of pipe (such as usb_sndctrlpipe(), usb_rcvctrlpipe(),
usb_sndisopipe(), and usb_rcviospipe()).

SGL and Larger Buffers
Copying to/from user space works with smaller
buffers or when timing isn’t an issue. However,
another approach is to use a zero copy method.
Using this method you lock down the user space
buffers into kernel space and use one of the
usb_map….() functions to build your scatter gather
list and send it to the device. For the 2.6 kernel, you
can lock down and map user pages into kernel space
by using the get_user_pages() (mm/memory.c),
function.

Tech Newsletter Page 11

In the sample driver, the endpoints and pipes are saved off in the
usb_crypt_devinfo structure in the usb_crypt_probe() function.
Once these pipes are created, they’re ready for use.

Sending & Receiving, USB Host Functions

Now that we have our interfaces and pipes, how do you actually
communicate with a USB device through the USB host controller?
The answer: urbs. Your must get to know urbs, an urb (Usb
Request Block) is the data structure used to send/receive data
and contains all of the information the USB host driver needs.
The specific urb fields of interest are the pipe handle, buffer,
buffer length, completion function, and context (a very handy
field which I’ll talk about more). You can allocate urbs using the
usb_alloc_urb() or kmalloc(), if you allocate the urb memory
directly don’t forget to initialize each urb using the function
usb_init_urb().

To transfer data with your USB device, your driver needs to create
the necessary kernel buffer and set up the urb using one of the
helper functions, usb_fill_bulk_urb(), usb_fill_init_urb(), or
usb_fill_control_urb(). In the sample driver, a pool of urbs
are created by the CreateIOPool() function, where each urb is
contained within a crypt_io_entry structure. When the sample
application sends data to the device, the user space buffer is
copied to the temporary kernel buffer using the
copy_from_user() function; for reads the copy_to_user()
function is used.

Another approach to transferring data is the use of scatter gather
lists. Instead of using a single buffer, your driver can build a scatter
gather list that describes a set of buffers you want to transfer
with your USB device. Each entry in the scatter gather list would
point to an individual packet to transfer, effectively building a
queue of buffers. The function, usb_sg_init(), is used to initialize
the scatter gather list, and then the actual transfer is done using
usb_sg_wait().

Once you have your urb set up, you can send a urb synchronously
or asynchronously. A little clarification here: you really “submit”
the urb to the USB host driver, which in turn transmits the data
or (if a read) generates a read request to the USB device. This
enables you to structure your driver code to handle multiple urbs
concurrently. In the sample driver code, usb_submit_urb() is used
for both reads and writes. The function, usb_submit_urb(), is
used to send a urb asynchronously. When the urb is sent or
received, the host driver calls the callback function set in the
complete field of the urb itself, with the value the urb context
field as an argument. A pointer to the crypt_io_entry structure
that contains the urb is used as the context, providing all of the
context for the urb request while the host driver is processing

our submit request. One advantage of using usb_smit_urb()
is that it can be called from an interrupt routine.

However, this asynchronous approach does have one drawback:
how do you handle the situation where a request never
completes? For example, if the USB device fails or is suddenly
disconnected, our driver needs a method for timing out the
request. The sample driver uses a wait event to handle this
situation. When a request is submitted, the code waits, with a
timeout of 3 seconds, on an event embedded in the
crypt_io_entry structure (the wait_queue_head_t IOWaitEvent
field). If a request does time-out, the request is returned to
the free pool and an error is returned to the user application.
The wait code is defined by IO_TIMEOUT_WAITEVENT.

The other method of sending a request is usb_bulk_msg(),
which sends the request synchronously; you provide a buffer,
length, and timeout value. This function is a helper function
of sorts, since it allocates and fills in the urb and then submits
the urb to the host driver. This function is in core/message.c
and is interesting to examine; eventually usb_bulk_msg() calls
the asynchronous function usb_submit_urb() with a wait
event to timeout the request. This is the same basic approach
used in the sample driver, look for the
IO_TIMEOUT_WAITEVENT define. usb_bulk_msg()
cannot be called from within an interrupt and it is intended for
bulk transfers only. For control messages, you can use
usb_control_msg().

Sample Driver

The sample driver manages our simple USB encryption device.
The idea is to embed the actual encryption engine in the USB
device itself. This enables a user to easily disconnect the device
and secure it as necessary (for example in a vault). Our sample
decryptor/encryptor device has two interfaces, one to encrypt
and another to decrypt. The encrypting interface has two
endpoints, one to send data to be encrypted and the second to
read the encrypted data back. A TUSB3210KDBPDK
development kit from Texas Instrument (see www.ti.com/usb)
is used as our USB device. A sample application is also
included and crypt_app.c contains the application code.

All of the driver code is contained in crypt_usb.c and the
associated header file, crypt_usb.h. The code is small and is
intended for demonstration purposes; a real production level
driver would be more complicated and handle all of the nasty
conditions when the USB device is disconnected while application
IO requests are being processed.

Linux USB (continued)

continued on page 12

Page 12 Tech Newsletter

SCSI Port Driver for Fibre Channel. Designed the operating system layer for a SCSI storage driver (XP, Win2K, NT,
Linux) for a Fibre Channel HBA (host bus adapter – PCI/SBUS card).

Embedded Network Appliance. Developed an embedded monitoring device for web sites and/or other data center systems.
The device uses the uC/OS real time kernel running on a Motorola ColdFire processor (MCF5206e).

WDM, NDIS Device Drivers . Developed a WDM and NDIS device driver for a prototype wireless system.

Parallel Search Engine. Developed a search engine that distributes database queries to other systems; the search runs in
parallel on the supporting systems and the results are written (through bulk inserts) back into the database.

Satellite Set Top Box. Developed a script language and compiler used to code the television UI (guide menus, channel select).

Camera Control. Wrote highly customized Windows user interface with special graphics and custom controls. The application
presents the user with camera images with graphic information overlaid (in near real time), camera configuration information,
and product inspection information.

Embedded TCP/IP Protocol Stack. Wrote an NT packet driver using NDIS driver subsystem to simulate a mobile network
for a military application. The embedded stack executed under NT, and the packet driver simulated network device IO.

Project Experience - Several projects Golden Bits has successfuly completed.

Linux USB (continued)

Like all standard kernel modules, the driver’s entry point is
defined by module_init(). When the driver module is loaded,
the usb_crypt_init function is called. This is where the driver
registers itself with the USB host driver via the
usb_register() function. After registering, the USB host
driver will call our probe function when our USB device is
plugged into the system. The probe function,
usb_crypt_probe(), is where the sample driver sets up the
interfaces, this function and the DumpUSBDevInfo() function
are good places to start viewing the code. The device
interfaces, endpoints, and pipes are saved in the
crypt_interface_info structure -- which is part of our private
device structure (usb_crypt_devinfo) -- and are indexed by
the defines *_INDEX.

A common function, crypt_xfer_func(), is used to send and
receive data with the USB device. The crypt_io_entry structure
contains the necessary urb and is used to track the urb after it
is submitted to the host driver. A pool of these structures are
created on startup by the CreateIOPool() function. All of the
requests are submitted asynchronously using the
usb_submit_urb() function. On completion, the callback
function, USB_IO_Complete_cb(), is called with a pointer
to the crypt_io_entry structure for that specific urb. The
crypt_io_entry structure provides us with the necessary context
to track the state of the urb.

When an urb is submitted, the code will block until
the urb is completed by host driver. However,
sometimes it might be desirable to timeout a request,
rather than hang the calling application. The define,
IO_TIMEOUT_WAITEVENT, handles this situation.
Instead of blocking forever, the code will wait 3
seconds and then timeout and return an error to the
calling application.

Summary

So there you have it, a primer on how to write a USB
device driver for Linux. Please feel free to email me
with any questions or comments:
deang@goldenbits.com.

!

References and resources:

USB Complete, Second Edition by Jan Axelson.
Lakeview Research.

www.usb.org & www.linux-usb.org

