
Introduction

Google implemented their Android applica-

tion framework using the Java language;

as a result, Android applications are writ-

ten in Java. Why Java? There are a num-

ber of reasons, both legal and technical,

but the end result is that if you want to

create an Android application, you’ll need

to use Java. However, there are some

cases where using Java is not the best

approach. Why should you rewrite an

existing (and well tested) C/C++ code

base just for Android? What if you need

more performance than what Java can

offer? How can you use a common code

base for Android and other platforms (iOS,

desktop, and embedded)? How can you

use a really good open source library writ-

ten in C/C++?

Fortunately there is a way you can do all of

this by using Android’s Native Develop-

ment Kit, otherwise known as Android

NDK. This newsletter provides a primer on

how to use the NDK and provides a sam-

ple application that you can download.

The sample application is a simple Tic-Tac

-Toe Android application that uses a C/

C++ code for the game logic. This sample

application calls the C/C++ source using

Android’s Native Interface

Android NDK

The NDK provides a set of tools and meth-

ods to enable you to call your C/C++ code

directly from a Java based Android appli-

cation. Google tries to discourage using

the NDK, and yes most of your Android

application development will work with

Java just fine, but if you need to use C/

C++ code – then use it!! The NDK is a

separate download that you install along

with the Android SDK.

One of the key things the NDK does for

you is handling the compiling and packag-

ing your code for the different target pro-

cessors that run Android, specifically

ARMv5TE, ARMv7-A, x86, and MIPS. The

processor architecture details are defined

by an Application Binary Interface (ABI for

short) that defines the low level processor

details such as data alignment, CPU in-

struction set, calling conventions, and

Going Native with Android NDK

How to call C/C++ code from your Android App

Golden Bits

Software ®

Summer, 2013

Volume 1, Issue 1

Golden Bits Tech
Newsletter

Highlights:

 Sample code can be down-

loaded from the Golden

Bits Web site. Use this

link:

http://www.docs-

goldenbits.com/newsletters/

goingnative-tictactoe-

samplecode.zip

Golden Bits Software, Inc.

3525 Del Mar Heights Road,

Suite 158

San Diego, CA 92130

858-259-3870 phone

858-259-7655 fax

Inside:

Sample Application 2

Code Examples 3, 4

Resources 6

Golden Bits Software ® is a software engineering firm providing consulting services

in a wide range of diverse technologies.

Contact information:

Email: deang@goldenbits.com
Web: goldenbits.com

http://www.docs-goldenbits.com/newsletters/goingnative-tictactoe-samplecode.zip
http://goldenbits.com/newsletter/goingnative/tictactoe-samplecode.zip

What about

application

development

support?

Yes, Google

provides an Eclipse

plugin called ADT,

Motorola also

provides a very nice

Eclipse plugin called

MOTODEV. Both of

these plugins are

feature packed and

recommended.

Page 2 Golden Bits Tech Newsletter

more. Each supported processor type has

an ABI short name that is used by the

build system, the name are: armeabi, ar-

meabi-v7a, x86, and mips.

The NDK uses the armeabi by default un-

less you specify additional processor

types. To specify additional processor

types, in the Application.mk file set the

APP_ABI for each of the desired processor

types. In the accompanying Tic-Tac-Toe

sample application, APP_ABI is set to x86

and armeabi types. The NDK will build a

library for each processor type under the

lib sub directory in your project directory.

When your application is deployed in

an .apk file, all of the processor specific

libraries are included. During the installa-

tion process the Android system will pick

out the appropriate library automatically.

The NDK also provides a set of prebuilt

libraries that are commonly used such as

libc, libm, libz, and more. The actual

mechanism that performs Java to C/C++

call is Google’s implementation of the JNI

standard, in fact the Java VM is an imple-

mentation created by Google. The NDK is

available for Linux, Windows, and Mac for

both 32 and 64 bit hosts, where the host is

the system you are using to build, not the

target Android device.

Installing the NDK is very simple. Just untar

the NDK files under the main Android SDK

directory, the sub directory will be android-

ndk-rX when X is the NDK version level.

The most recent version is ‘8e’, so the di-

rectory will be ‘android-ndk-r8e’. You will

need to set the NDK environment variable

to point to the directory where you untared

the NDK. A great place to start learning the

NDK is with the documentation that is lo-

cated in the ‘docs’ directory of the NDK.

Another great place to start learning the

NDK is by examining the sample code un-

der the samples directory.

Support for multiple processor types, pack-

aging and deploying, ease of use, debug-

ging, and pre-build libraries are a few of the

reasons why the NDK is a very powerful

tool.

A simple Tic-Tac-Toe An-

droid application is shown

here. This application is

intentionally very simple,

the main purpose is to

provide a quick start for

using and learning the

Android NDK.

You can download the

sample application from

this link:

http://www.docs-

goldenbits.com/

newsletters/goingnative-

tictactoe-samplecode.zip

Going Native!!

http://www.docs-goldenbits.com/newsletters/goingnative-tictactoe-samplecode.zip

Page 3 Volume 1, Issue 1

Application Setup

For your Android application, your C/C++ source code and Android.mk file should go in the ‘jni’ directory under

your project’s main directory, but this is not a requirement for the source files. The Android.mk file is used by the

NDK build script to find your native source files. You can modify the LOCAL_PATH variable in the Android.mk file

to point to your C/C++ source files in a different directory. The sample Tic-Tac-Toe application does this, the An-

droid.mk file points to the source files located in a common directory. The Application.mk file (also located in the

jni sub directory) is used to specify additional build options, such as multiple processor types (mentioned previ-

ously) or to override the compiler options.

To build your native code, run the ndk-build script your project directory. By default the script will look for the

Appliation.mk file in the jni sub directory. The ndk-build script is located in the NDK directory.

Calling C/C++ Code

The actual mechanism used to call C/C++ code is the Java JNI interface (JNI == Java Native Interface). Java JNI

has been around since the beginning of Java itself, for Java applications it provides a way to call native code.

The latest JNI version is 6.0.

So how do you actually call your native code? Show me the code!! Here’s a quick tour of the Tic-Tac-Toe sam-

ple application below. In the sample Tic-Tac-Toe application, look at the Java file GameBoardView.java. A snip-

pet of the code is shown below (Figure 1),

// Declare the native functions here

 public native int TicGetNextMove(byte UserSelectedSquare,

 GameMove NextMove);

 public native int TicGetSquareState(byte Square,

 SquareState SqState);

// Load the library as part of the class construction.

 // make sure to load our native library

 static

 {

 System.loadLibrary("GameEngine");

 }

Figure 1

A cyclist was stopped by Customs. "What's in the bags?", asked the officer, pointing to the cyclist’s panniers. "Sand," said the

cyclist. "Let me take a look.", said the cop. The cyclist did as he was told, emptied the bags, and proving they contained noth-

ing but sand, refilled the bags and continued across the border.

A week later, the same thing happened and continued every week for a year until one day the cyclist with the sand bags failed

to appear.

A few months later, the cop saw the cyclist living it up downtown. "You sure had us foxed", said the cop. "We knew you were

smuggling something across the border. I won't say a word, but what was it you were smuggling?” "Bicycles!" responded

the cyclist.

Going Native!!

Going Native!!

Page 4 Golden Bits Tech Newsletter

Once you have declared the native functions and loaded the library, actually calling the native functions is very easy. Just

invoke the function directly with the appropriate arguments. In GameBoardView.java you can see how the TicGet-

NextMove()is called directly (Figure 2). On the C/C++ side of things, you will need to do a little more work but not

much. First wrapper functions need to be created, see AndroidWrapper.c in the sample application and in Figure 3.

These wrapper functions will then call your native code. In the sample code you can see when the native method, TicGet-

NextMov() is called, the Java VM routes and invokes the Java_com_goldenbits_tictactoe_GameBoardView_TicGet-

NextMove() function in your C/C++ library. Why the funny function declaration in AndroidWrapper.c? The function declara-

tion is part of the Java JNI specification; it enables the JNI interface to find the correct C/C++ function. The format of the

native functions is:

extern "C" <return_type>

Java_<package_name>_<class_name>_<method_name>(JNIEnv* env, ...)

In our example, the class name is com.goldenbits.tictactoe.GameBoardView but the periods (‘.’) are replaces with the un-

derline character (‘_’).

A Few JNI, C/C++ Details

Every native function begins with two arguments, JNIEnv and jobject. JNIEnv is a pointer to the JNI interface itself, the set

of pointers to functions that your native code calls to interact with the managed Java code. For example, when using JNI

functions to access a class member variable, your native code will call JNIEnv *(pEnv)->GetFieldID() (Note the

parens around pEnv). The second argument, jobject, will vary depending if the native function is static or non-static.

A little clarification is necessary here; a native function is static if it is declared as static in the Java class, for example:

class SomeJavaClass {

 public static native void MyStaticFunction();

jint

Java_com_goldenbits_tictactoe_GameBoardView_TicGetNextMove(JNIEnv *env,

 jobject obj, jbyte CheckedSquare,

 jobject GameMoveObj)

{

 // Your native C/C++ code goes here.

 // The actual entry points to your code are C functions.

 // You will call C++ code from here.

}

int retCode = TicGetNextMove(gameSq.mSquareNum, gameMv);

Figure 2

Figure 3

Page 5 Volume 1, Issue 1

}

From your Java code, the static function would be invoked by calling SomeJavaClass.MyStaticFunction()

When MyStaticFunction native function is called, jobject is a reference to the Java class not an instance of a Java

class. A non-static function is declared as a member function of the class, for example:

class SomeJavaClass {

 public native void MyFunction();

}

In this example, the non-static function is called from an instance of the class, like this:

class SomeJavaClass myClass = new SomeJavaClass();

myClass.MyFunction()

In this example, jobject is a reference to the SomeJavaClass instance.

The remainder of the arguments map to their respective data types. Primitive data types are passed as values, Java

objects, such as strings, arrays, or classes, are passes by reference to the native function. The primitive data types are

show in Table 1.

References to objects.

Objects passed to the native functions have a local reference which means the object reference is valid during the

execution of the native call, once the native call returns the local reference is no longer valid and will be cleared by the

JVM’s garbage collector. Thus, it is a very bad idea to store a reference to an object in your native code. However

there may be scenarios where you want to insure the object is retained and not garbage collected. For example, may-

be your native code returns an object that contains counters of some set of operations and you want to use a single

object instead of returning a new object every time counters are requested. In this case you could set a global refer-

ence to this object and save off the reference in your native code. Just do not forget to free the global reference when

the object is no longer needed.

Java Type Native Type Description

boolean jboolean Unsigned 8 bits

byte jbyte Unsigned 8 bits

char jchar

Unsigned 16 bits. NOTE: Java uses Unicode

which is 16 bits. If your native code uses a differ-

ent encoding such as ASCII or UTF-8, you will

need to convert .

short jshort Signed 16 bits

int jint Signed 32 bits

long jlong Signed 64 bits

float jfloat 32 bits

double jdouble 64 bits

Table 1

Going Native!!

Golden Bits Project Experience

Tech Newsletter published by Golden Bits Software, Inc. Copyright (c) 2002-13. All rights reserved.
Disclaimer: All material is presented "as is" without warranty of any kind, either expressed or implied, including, without limita-

tion, the implied warranties of merchantability or fitness for a particular purpose. Golden Bits shall not be liable for any damages

whatsoever related to the use of any information presented in these materials. The sample code provided is just that, samples and

is not intended for any commercial use. The information presented is as accurate as possible, however mistakes can and do hap-

pen. Please inform Golden Bits by email with any errors. Golden Bits shall not be responsible for any damages owing to editorial

errors.

Web. Enhanced and extended web monitoring system. Added new web services using Java servlets.

Embedded Devices/OS. Experience with embedded OS systems: Linux, TI DSP, and Threadx. Developed application and

system level code including USB enhancements and embedded management system for a large blade enclosure. Ported

embedded Linux driver code to Power PC 44GX and Broadcom 1255 processors.

WDM, NDIS Device Drivers. Developed a WDM and NDIS device driver for a prototype wireless system. Also developed

USB wireless driver which presented the USB device as a network adapter to the host.

Device Drivers, Windows, Linux, Mac. Developed a variety of Windows, Linux, and Mac rivers to handle network packet

inspection, USB devices, SCSI Fibre channel adapters, ethernet adapters, and job scheduling to a device.

Set Top Box. Helped port a STB to new Broadcom 7405 chip. Developed a script language and compiler used to code the

television UI (guide menus, channel select).

SCSI Port driver for Fibre Channel. Designed the operating system layer for a SCSI storage driver (XP, Win2K, NT, Linux)

for a fibre channel HBA (host bus adapter – PCI/SBUS card).

Access Object Fields

Reading and setting object fields is one of the common ways used to pass arguments to and from native code.

Using Java objects to pass arguments is very simple and easy way to call native code. In the Tic-Tac-Toe sam-

ple application, two Java object are used to pass game information, GameMove and SquareState. Also in the

Tic-Tac-Toe sample, look at the function TickHelper_SetByteValue in AndroidWrapper.c. This function uses

three JNI functions , GetObjectClass(), GetFieldID(), SetByteField() to set the byte value of an object. JNI pro-

vides a set of assessor and setter functions that enable your native code to get and set member variables of

your Java object.

Summary

Calling native C/C++ code is really not that difficult or mysterious and depending on your application, does

have advantages. This is a quick overview of the Androids’s NDK and JNI, enough to get you started. Download

the sample Tic-TacT-oe application and give it a spin. It provides a great od starting point for Going Native.

Resources

The NDK documentation and download can be found here: http://developer.android.com/tools/sdk/ndk/

index.html

Android, really good tips, a must read: http://developer.android.com/training/articles/perf-jni.html

Google Groups: https://groups.google.com/group/android-ndk

Page 6 Volume 1, Issue 1

Going Native!!

http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/training/articles/perf-jni.html
https://groups.google.com/group/android-ndk

